Зсувна пружність гелів та метод крутильних коливань
DOI:
https://doi.org/10.18524/0367-1631.2025.63.347011Ключові слова:
гель, модуль зсуву, крутильний маятникАнотація
Запропоновано варіант методу крутильних коливань для визначення модуля зсуву гелів. Визначення модуля зсуву гелів як параметра, що характеризує деформаційні властивості, є актуальним завданням у розробці
нових методів та препаратів для лікування деструкцій сполучної тканини, а також у тканинній інженерії. Задачею останньої, як відомо, є створення гелів, які б могли служити замінниками пошкодженої біологічної тканини. При вирішенні цієї задачі важливою характеристикою є реологічні параметри гелів, що створюються для цієї мети.
У статті наведено загальну характеристику методу крутильних коливань та його реалізацію з використанням різних експериментальних методик. Показано, що існує клас гелів, деформаційні властивості яких наближаються до властивостей твердого тіла. Умовно ці гелі названі високомодульними. Визначено особливості застосування методу крутильних коливань при дослідженні високомодульних гелів, які пов'язані зі зміною напруженого стану в системі.
Особливістю запропонованого у статті варіанту визначення модуля зсуву гелів є конкретні зразки. Ці зразки являють собою полімерні трубки, заповнені гелем. Кінці трубок закривають металеві пробки. Такий тип зразка мінімізує похибки, характерні для досліджень зсувної пружності гелів. У досліджуваному зразку площа, зайнята гелем між денцями металевих пробок, має форму циліндра та вільна від стискаючих напружень. Крім того, оскільки система полімер-розчинник розташована в трубці, випаровування розчинника не відбувається. Концентрація полімеру в гелі дорівнює концентрації полімеру у вихідному розчині.
Запропонований варіант реалізовано за допомогою крутильного маятника. Розроблено метод розрахунку модуля зсуву на основі отриманих експериментальних даних частот вільних затухаючих коливань порожньої трубки та трубки, яка заповнена високомодульним гелем.
Запропонований варіант протестовано на прикладі желатинового гідрогелю. Значення модуля зсуву для желатинового гідрогелю з концентрацією 20% було отримано як , що узгоджується з модулем зсуву хрящової тканини.
Посилання
De Gennes P.G. Scaling Concepts in Polymer Physics. – Cornell Univer-sity Press.Jthaca-London,1973. – 325р.
Calo E., Khutoryansky V.V. Biomedical applications of hydrogels: A re-view of patents and commercial products// Eur.Polym.J. – 2014. – 65. – Р.252-267.
Булавін Л.А., Забашта Ю.Ф. Фізична механіка полімерів. Київ. Вида-вничий центр «Київський університет,1999. – 226c.
Забашта Ю.Ф., Ковальчук В.І., Свєчнікова О.С., Булавін Л.А. Визна-чення коефiцiєнта поверхневого натягу полiмерного гелю// УФЖ. – 2022. – 67(5). – С.365-369.
Забашта Ю,Ф., Ковальчук В.І., Свєчнікова О.С., Булавін Л.А. Застосу-вання методу розсiяння свiтла для вивчення поверхневої структури гiдрогелю// УФЖ. – 2022. – 67(6). – С.463-467.
Забашта Ю.Ф., Ковальчук В.І., Копчанський П., Сафарик І., Лазаре-нко М.М., Вергун Л.Ю., Булавін Л.А. Ламелярно-ланцюговi гiдрогелi: особливостi структури//УФЖ. – 2023. – 68(8). – С.538-544.
Nowick A.S., Berry B.S. Anelastic Relaxation in Crystalline Solids, Aca-demic Press, New York-London, 1972. – 677p.
Timoshenko S., Goodier J. Theory of Elasticity, Mac Grow Hill Higher Education, 1970. – 519p.
Akthar R et al. Oscillatory nanoindentation of highly compliant hydro-gels: A critical comparative analysis with rheometry//J. Mater. Res. – 2018. – 33(08). – Р. 873-883.
Souquir H. et al. Two-step build-up of a thermoreversible polymer network: From early local to late collective dynamics // Phys.Rev. E. – 2015. – 91(4). – Р. 042305-042309.
Czerner M. et al. Determination of Elastic Modulus of Gelatin Gels by Indentation Experiments//Procedia Material Science. – 2015. – 8. – Р.287-296.
Giband T., et al. Rheoacoustic Gels: Tuning Mechanical and Flow Properties of Colloidal Gels with Ultrasonic Vibrations// Phys.Rev. X. – 2020. – 10. – Р.011028-011049.
Bertula K., et al. Strain-Stiffening of Agarose Gels// ACS Macro Let-ters. – 2019. – 8. – Р.670-675.
Subramani R.,et al. The Influence of Swelling on Elastic Properties of Polyacrylamide Hydrogels// Frontiers in Materials. – 2020. – 7(212). – Р.1-3.
Hsu S., Jamieson A. Viscoelastic behaviour at the thermal sol-gel transition of gelatin// Polymer. – 1993. – 34. – Р.2602-2608.
Almeida P. et al. Fibrous Hydrogels under Multi-Axial Deformation: Persistence Length as the Main Determinant of Compression Soften-ing//Advanced Functional Materials. – 2021. – 31. – Р.2010527-201536.
Zhu L., et al. A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper// RSC Advances. – 2017. – 7. – Р.3755-43763.
Eschweiler J. et al. The Biomechanics of Cartilage—An Overview// Life. – 2021. – 11. – Р.2-14.
Булавін Л.А., Гнатюк К.І., Забашта Ю,Ф., Свєчнікова О.С., Цим-балюк В.І. Зсувний модуль та структура хрящової тканини// УФЖ. – 2022. – 67 (4). – Р.277-283.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution-ShareAlike 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) роботи, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).