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Chaos-geometric, neural networks and system analysis and modelling
of chaotic pollution dynamics of the complex hydroecological systems

An advanced combined neural networks and chaos-geometric method for analysis, model-
ling, and forecasting of the chaotic pollution dynamics of complex hydroecological systems is
presented. The method is based on the use of advanced methods of the theory of chaos and
dynamic systems for the analysis of time series of pollutants concentrations. The general ap-
proach includes the Gottwald-Melbourne test, the correlation integral method , fractal and
multifractal formalism, average mutual information, false nearest neighbours, surrogate data
algorithms, analysis on the basis of the Lyapunov's exponents, Kolmogorov entropy, nonline-
ar forecast models based on algorithms of optimized predicted trajectories, neural networks
modelling. As an illustrative example, a chaotic dynamics of the nitrates concentrations in
the Small Carpathians river’s watersheds in the Earthen Slovakia during 1969-1996 years is
considered. The data of calculations of the dynamical and topological invariants are present-
ed.
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Introduction. In the modern theory of geo-environmental systems [1-5], the
problem of studying a quantitative pollution dynamics is one of the most important
and fundamental problems. The most models are currently used to assess the state
(and forecast) of environmental pollution at the present time using deterministic
models or by simplifying them based on simple statistical regressions. The success of
these models, however, is limited by their inability to describe the nonlinear charac-
teristics of the behavior of pollutant concentrations, as well as the lack of understand-
ing of the physical and chemical processes involved [1-5].

Although the use of chaos theory methods imposes certain fundamental limita-
tions on long-term forecasts, however, as has been shown in a number of the works
(e.g., [3-11] and Refs. therein), these methods can be successfully applied for short-
term or medium-term forecasts. These works proved that nonlinear methods of chaos
theory and dynamic systems can be applied with satisfactory accuracy for analysis,
modelling and forecasting of the temporal dynamics of atmospheric pollutant concen-
trations [3-5]). This opens up very attractive prospects for using the same methods in
studying the dynamics of pollution of other ecological and hydrological systems.

In this work we present some advanced data of study of the temporal dynamics
of changes in the nitratesconcentrations in the watersheds of the Little Carpathians
using a generalized chaos-geometric and neural networks approach. A chaotic behav-
1or in the time series of the nitrate concentrations is investigated.

Theoretical method. Our approach to modeling the chaotic dynamics of com-
plex environmental systems is based on the chaos -geometric and neural networks
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methods. As the methods have been in details considered in the previous papers (e.g.

[3-20]), here we are limited only by the key points.

In general, the chaos-geometric approach includes using a combined set of such
non-linear analysis, dynamical systems and a chaos theory methods as the Gottwald-
Melbourne test, the correlation integral method, algorithms of average mutual infor-
mation, false nearest neighbors, surrogate data, methods of analysis based on the
Lyapunov’s exponents, Kolmogorov entropy, power spectrum, nonlinear prediction
models, based on algorithms of optimized predicted trajectories, B-spline approxima-
tions, neural network simulation algorithms etc (e.g.[3-12]).

The main stages of a chaos-geometric (combined with neural networks technol-
ogy) to analysis, processing and forecasting data of the hydroecological system pollu-
tants dynamics are follows:

1. General qualitative analysis (in terms of ordinary differential equations or the
Arnold analysis) of the hydroecological system pollutants dynamics; modeling
the spatial and temporal structure of the fields of concentrations of impurities in
the hydroecological system,;

il.  Application of different chaos-geometric tests on the presence of chaotic ele-
ments, functions and modes in a system; the Gottwald-Melbourne test etc;

1. Fractal and quantum geometry of a phase space (choice of time delay, determi-
nation of embedding dimension by methods of correlation dimension algorithm
and false nearest neighbors algorithm);

iv.  Analysis and computing the dynamic and topological invariants of a chaotic sys-
tem and nonlinear forecasting of a temporal (spatial) evolution of system dy-
namics.

The key points of the whole approach are reflected in the flowchart in Table 1.

The fundamental ideas of the combined chaos-geometric (plus differential equa-
tions one and the Armold analysis) approach to modelling, processing and prediction
of chaotic dynamics are ideologically reduced to reproduction (and reconstruction) of
a phase space of the geosystems, prediction of the temporal evolution of the main pa-
rameters of a system. From the viewpoint of mathematical modelling it is a question
of consideration of unambiguous representations of a kind:

Fi= G(F), (1)

where F e RP — is the state vector, Dis the dimension, i — discrete time, G is the D-

dimensional mapping. To implement the ideology of simulation of a compact geo-

metric attractor and the use of chaos-cybernetic algorithm of predicted phase trajecto-
ries of the system to restore the phase space of the system, it is possible to use several
concepts, first, the concept of average mutual information, and secondly, the concept
of using the properties of the corresponding linear autocorrelation function (see Table

1).

The master task of mathematical modeling is to determine the corresponding
embedding dimension and to reconstruct a Euclidean space R¢ large enough so that
the set of points d, can be unfolded without ambiguity [12, 14, 18, 29]. In accordance
with the embedding theorem, the embedding dimension, dg, must be greater, or at
least equal, than a dimension of attractor, dy, 1.e.dg > d4.
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Table 1. Flowchart of the combined chaos-geometric and neural networks (plus differential
equations one and the Armold analysis) approach to modelling, processing and prediction of
chaotic dynamics of the hydroecological systems

I. General qualitative analysis (in terms of ordinary differential equations
or the Arnold analysis) of the hydroecological system pollutants dynamics
;general dynamics differential equations analysis)

y

II. Application of the different chaos-geometric and neural networks
tests on a presence of chaotic (stochastic) elements, functions and
modes in the geosystem;

1. Gotwald-Melbournetest; Chirikov test; Naive model
tests;

U

2. Energy and spectral methods and algorithms: energy and
power spectra, energy level statistics, random matrix analy-
sis; characteristic distributions of the Wigner-Dyson type

U

III. Multifractal and quantum geometry of a phase space and
dynamics of resonances
3. Computing the fractal parameters, multifractal
spectra; wavelet analysis; cepstrum analysis

U

4. The Packard-Takens algorithm; the advanced au-
tocorrelation function or average initial information
algorithms; The Green’s function method

U

5. Reconstruction of a phase space; Computing
embedding dimension, correlation dimensions; us-
ing the methods of the correlation integral by
Grassberger-Procaccia OR the false nearest neigh-
bor points formalism

U

IV. Forecasting chaotic dynamics of the complex geosystems

6. Computing the invariants; The global Lyapun-
ov’s dimension analysis;Kolmogorov entropy anal-
ysis; The Kaplan-York dimension analysis;
Method of nearestneighboring points

7. New methods and algorithms of nonlinear
forecasting chaotic dynamics of the geosystems
and ecosystems (“minmax” algorithms, meth-
odsofthe stochastic propagators;

Neural networks modelling algorithms with
application of the polynomial or B-spline mod-
els, wavelets etc ...
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In order to reconstruct the corresponding attractor dimension (e.g., [3,5-8]) one
could use two main standard approaches. The first approach is the well-known corre-
lation integral analysis (e.g. [9]), which is one of the widely used techniques to inves-
tigate the signatures of chaos in a time series. The method introduces the correlation
integral, C(r), to distinguish between chaotic and stochastic systems. To compute the
correlation integral, the standard algorithm by Grassberger-Procaccia [9] is usually
used. The problem is reduced to computing the next quantity:

. 2
C(r) _Jl‘fl—IEO—N(n—l) ; H(’”_H)’; -y
1<i<j<N
where H is the Heaviside step function with H(u) =1 for u > 0 and H(u) = 0 for u 6 0,
r 1s the radius of sphere centered on y; or y;, and N is the number of data measure-
ments.

One of the principally important points of the whole approach to modeling and
forecasting chaotic dynamics of the geosystems is computing the topological and dy-
namical invariants [3-12]. The latter include, in particular, local and global Lyapun-
ov’s dimensions or Lyapunov’s exponents. It is worth to remind the classical defini-
tion of the Lyapunov’s exponents through e logarithms of absolute values of eigen-
values of linearized dynamics focused on the attractor, more precisely:

e 1 @ _ p , 1/2
L= lim (Jlog{d(o)} d(?) {;613} (t)} (3)

). 2)

t—0
d(0)=0

Here, the norm determines the degree of divergence of two adjacent trajectories,
that is, the master trajectory and the adjacent trajectory with initial conditions
S(0)+3S5(0) (S = F). It 1s important to note that the negative dimensions indicate the
local average compression rate and the positive ones indicate the expansion one. The
Lyapunov’s exponents are independent of the initial conditions, and do comprise an
invariant measure of attractor. Usually, the computing of the Lyapunov’s exponents
allows quickly determine whether the system is chaotic or not.

In fact, if one manages to derive the whole spectrum of the Lyapunov’s expo-
nents, other invariants and parameters of the system (i.e. Kolmogorov entropy (K./)
as well as an average predictability) can be calculated. The Kolmogorov entropy K,
which, according to definition, measures the average rate at which information about
the state 1s lost with time. Numerically, the Kolmogorov entropy can be determined
as the sum of the positive Lyapunov’s exponents. The estimate of the dimension of
the attractor is provided by the Kaplan and York conjecture:

J
pS
dL = ] + = > (4)

j+l

J j
where j is such that ZKQ >0 and Zka <0, and the Lyapunov’s exponents A, are

o=l a=l1
taken in descending order.It should be noted that there are several algorithms for
computing a spectrum of the Lyapunov’s exponents, among which the most common
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Fig. 1. Monthly average nitrate concentrations (mg 1-1) in the Ondava River
basin at Stropkov for the hydrological years 1968/69 - 1995/96

is the method based on the Jacobian mapping. The detailed information about the cit-
ed characteristics as well as the details of the main computational algorithms to de-
termine the topological and dynamical invariants can be found in Refs. [3-20]). All
calculations are performed with using “Geomath”, “ScanPoints” PC computational
codes [3,5,12].

Some results and conclusion. .The advanced chaos-geometric approach gas
been applied to modelling and forecasting of the temporal dynamics of fluctuations of
the nitrates concentrations in the Small Carpathians river’s watersheds in the Earthen
Slovakia during 1969-1996 years. As starting data, the detailed data s of empirical
observations have been used for several watersheds in the Small Carpathians region,
which were carried out by employees of the Institute of Hydrology of the Slovak
Academy of Sciences [1]. Sampling for nitrates at these stations was carried out twice
a month during 1991-95. Chemical nitrogen compounds mainly arise from industrial
and natural fertilizers, industrial and wastewater and NOx emissions from internal
combustion engines and transport. Nitrates are characterized by significant seasonal
variability, with their highest values occurring during snowmelt in spring.

As a typical example, Fig. 1 shows the average monthly nitrate concentrations at
the Ondava: Stropkov point. According to data [1], until approximately 1988-89 ni-
trate concentrations increased, reaching a maximum of ~ 25 mg I-1 in the spring of
1989, which was associated with the increasing use of nitrogen fertilizers from year
to year, after which agriculture became less intensive, causing a decrease in nitrate
concentrations.

Below we shortly present the data of numerical experiments on the restoration of
the embedding dimension (dg), using the method of correlation integral and the algo-
rithm of false nearest neighboring points. In order to calculate the correlation dimen-
sion d; it one should calculate the correlation integrals C(r) for different embedding
dimensions. The correlation dimension of the attractor (d,) is defined as the value of
the correlation dimension, in which it does not change as the embedding dimension
increases.Table 1 summarizes all the results for the recovery of attractors, as well as
the calculational data for the K chaotic index (K.;) and different dynamical and topo-
logical invariants (time delay t,correlation dimension (d>), embedding space dimen-
sion (dg), Lyapunov’s exponent (A;), Kolmogorov entropy (K..;), Kaplan-York di-
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Table 1. Calculational data for the chaotic index (K.») and different dynamical and topo-
logical invariants: time delay t,correlation dimension (d2), embedding space dimension
(dg), Lyapunov exponent (i), Kolmogorov entropy (Ken:), Kaplan-York dimension (dy),

predictability limit (Prmax) for the for nitrate concentrations in the catchments of the Little

Carpathians

Watershed (Point) T d> de dr Prmax K

Ondava (Stropkov) 9 5.31 6 4.11 8 0.68
Vydrica (C.Most) 19 5.21 6 5.01 12 0.71
Gidra (Main) 16 5.13 6 5.87 14 0.82
Gidra (Pila) 20 5.82 6 5.17 12 0.75
Ladomirka (Svidnik) 10 3.88 4 3.12 7 0.71
Ondava (Svidnik) 10 3.65 4 3.27 7 0.80
Babie (Olsavka) 8 4.89 5 4.46 8 0.69

mension (d;), etc for the for nitrate concentrations in the catchments of the Little
Carpathians.

In the case considered, the values of the chaos parameter K in all cases exceed
0.68, that is, the considered time series are subject to the influence of chaotic dynam-
ics. The analysis of the dynamical and topological invariants shows that, for example,
the resulting Kaplan- York dimension is very close to the correlation dimension. The
analysis on the basis of the Lyapunov exponents as well as the other dynamical and
topological invariants indicates on a pronouncedchaotic dynamics of the correspond-
Ing time series.

To conclude, an advanced version of the chaos-geometric method is adapted for
modelling the chaotic dynamics of the nitrates concentrations in the Small Carpathi-
ans river’s watersheds in the Earthen Slovakia during 1969-1996 years using such
chaos theory methods as the Gottwald-Melbourne test, the correlation integral meth-
od, the algorithms of average mutual information, false nearest neighbors, surrogate
data, methods of analysis based on the Lyapunov’s exponents, Kolmogorov entropy,
etc.
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Xeuyeniyc O.10., Iecnamenko I'.B.

Xaoc-reoMeTpUYHNH, HCHPOHHO-MePesKeBUil Ta CUCTEeMHHUI aHAJII3
i MO/1eJIIOBAHHSI XAa0TUYHOI TUHAMIKH 320pyAHEHHSA CKJIAJTHUX
TiZIPOeKOJIOTiYHUX CUCTEM

AHOTAILILA

Ilpeocmasneno 600cKOHaNeHUll KOMOIHOBAHUU XAOC-2eOMemMpPUYHULlL  Ma  HEeUPOHHO-
Mepedicesull nioxio 00 aHaunizy, MOOENOBAHHL MA NPOSHO3V8AHHA OUHAMIKU XAOMUYHO20 3a-
OPYOHEHHS CKAAOHUX 2IOPOeKONocIUHUX cucmem. Memoo 3acHosaHull Ha BUKOPUCMAHHI ON-
MUMI308aHUX Memo0ie meopii Xaocy ma OUHAMIYHUX cucmeM OJisl AHANi3) Y4acoux psodis
KOHYeHmpayiti 3a0pyOHIOI0YUX ped08UuH. 30Kpema, nioxio KOMOIHO8AHO BUKOPUCMYE Kpume-
piti ['omseanvoa-Menvoypra, memood Kopenayiino2o iHmezpany, MyivmigpakmaivHuu gop-
MAnizm, aneopummu cepeonboi 3aEMHOI iHGopMayii, NOMUIKOBUX HAUOIUNCUUX CYCidi8, CY-
PO2amuux OaHux, anaiiz Ha ocHoel nokasnuxie Jlanynoea, enmponii Konmozoposa, a makoowc
HeNiHitiHI MoOdeni npo2Ho3y. AK HAOYUHUL NPUKIAO, PO32TIAAHYMO XAOMUYHY OUHAMIKY KOHYEH-
mpayiu Himpamie y 60000inax pivoxk Manux Kapnam (Crosauuuna) npomsecom 1969-1996
POKi6 ma HasedeHi OaHi 0OYUCTIeHb OUHAMIYHUX MA MONOJIO2IYHUX THBAPIAHMIE.

KurouoBi ciioBa: cxiaoni 2iopoekonociyuni cucmemu, Xaomuuha OUHamika npoyecy 3aopy-
OHEHHSl, XA0C-2eOMeMmPUYHUL NIOXI0, OUHAMIYHI Ma MONOJO2IYHI iHEaApiaHmMU.
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