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Chaos-geometric, neural networks and system analysis and modelling 

of chaotic pollution dynamics of the complex hydroecological systems 
 

An advanced combined neural networks and chaos-geometric method for analysis, model-

ling, and forecasting of the chaotic pollution dynamics of complex hydroecological systems is 

presented. The method is based on the use of advanced methods of the theory of chaos and 

dynamic systems for the analysis of time series of pollutants concentrations. The general ap-

proach includes the Gottwald-Melbourne test, the correlation integral method , fractal and 

multifractal formalism, average mutual information, false nearest neighbours, surrogate data 

algorithms, analysis on the basis of the Lyapunov's exponents, Kolmogorov entropy, nonlin-

ear forecast models based on algorithms of optimized predicted trajectories, neural networks 

modelling. As an illustrative example, a chaotic dynamics of the nitrates  concentrations in 

the Small Carpathians river’s watersheds in the Earthen Slovakia during 1969-1996 years is 

considered. The data of calculations of the dynamical and topological invariants are pre-

sented.  

Key words: complex hydroecological systems, chaotic pollution dynamics, chaos-geometric 

approach, dynamical and topological invariants 

 

 

Introduction. In the modern theory of geo-environmental systems [1-5], the 

problem of studying a quantitative pollution dynamics is one of the most important 

and fundamental problems. The most models are currently used to assess the state 

(and forecast) of environmental pollution at the present time using deterministic 

models or by simplifying them based on simple statistical regressions. The success of 

these models, however, is limited by their inability to describe the nonlinear charac-

teristics of the behavior of pollutant concentrations, as well as the lack of understand-

ing of the physical and chemical processes involved [1-5]. 

Although the use of chaos theory methods imposes certain fundamental limita-

tions on long-term forecasts, however, as has been shown in a number of the works 

(e.g., [3-11] and Refs. therein), these methods can be successfully applied for short-

term or medium-term forecasts. These works proved that nonlinear methods of chaos 

theory and dynamic systems can be applied with satisfactory accuracy for analysis, 

modelling and forecasting of the temporal dynamics of atmospheric pollutant concen-

trations [3-5]). This opens up very attractive prospects for using the same methods in 

studying the dynamics of pollution of other ecological and hydrological systems.  

In this work we present some advanced data of study of the temporal dynamics 

of changes in the nitratesconcentrations in the watersheds of the Little Carpathians 

using a generalized chaos-geometric and neural networks approach. A chaotic behav-

ior in the time series of the nitrate concentrations is investigated. 

Theoretical method. Our approach to modeling the chaotic dynamics of com-

plex environmental systems is based  on the chaos -geometric and neural networks 
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methods. As the methods have been in details considered in the previous papers (e.g. 

[3-20]), here we are limited only by the key points.  

In general, the chaos-geometric approach includes using a combined set of such 

non-linear analysis, dynamical systems and a chaos theory methods as the Gottwald-

Melbourne test, the correlation integral method, algorithms of average mutual infor-

mation, false nearest neighbors, surrogate data, methods of analysis based on the 

Lyapunov’s exponents, Kolmogorov entropy, power spectrum, nonlinear prediction 

models, based on algorithms of optimized predicted trajectories, B-spline approxima-

tions, neural network simulation algorithms etc (e.g.[3-12]).   

The main stages of a chaos-geometric (combined with neural networks technol-

ogy) to analysis, processing and forecasting data of the hydroecological system pollu-

tants dynamics are follows:  

i. General qualitative analysis (in terms of ordinary differential equations or the 

Arnold analysis) of the hydroecological system pollutants dynamics; modeling 

the spatial and temporal structure of the fields of concentrations of impurities in 

the hydroecological system; 

ii. Application of different chaos-geometric tests on the presence of chaotic ele-

ments,  functions and modes in a system; the Gottwald-Melbourne test etc; 

iii. Fractal and quantum geometry of a phase space (choice of time delay, determi-

nation of embedding dimension by methods of correlation dimension algorithm 

and false nearest neighbors algorithm); 

iv. Analysis and computing the dynamic and topological invariants of a chaotic sys-

tem  and nonlinear forecasting of a temporal (spatial) evolution of system dy-

namics. 

The key points of the whole approach are reflected in the flowchart in Table 1. 

The fundamental ideas of the combined chaos-geometric (plus differential equa-

tions one and the Armold analysis) approach to modelling, processing and prediction 

of chaotic dynamics are ideologically reduced to reproduction (and reconstruction) of 

a phase space of the geosystems, prediction of the  temporal evolution of the main pa-

rameters of a system. From the viewpoint of mathematical modelling it is a question 

of consideration of unambiguous representations of a kind: 

Fi+1= G(Fi),                                               (1) 

where F ∈ R
D
 – is the state vector, Dis the dimension, i – discrete time, G is the D-

dimensional mapping. To implement the ideology of simulation of a compact geome-

tric attractor and the use of chaos-cybernetic algorithm of predicted phase trajectories 

of the system to restore the phase space of the system, it is possible to use several 

concepts, first, the concept of average mutual information, and secondly, the concept 

of using the properties of the corresponding linear autocorrelation function (see Table 

1). 

The master task of mathematical modeling is to determine the corresponding 

embedding dimension and to reconstruct a Euclidean space R
d
 large enough so that 

the set of points dA can be unfolded without ambiguity [12, 14, 18, 29]. In accordance 

with the embedding theorem, the embedding dimension, dE, must be greater, or at 

least equal, than a dimension of attractor, dA, i.e.dE > dA. 
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Table 1. Flowchart of the combined chaos-geometric and neural networks (plus differential 

equations one and the Armold analysis) approach to modelling, processing and prediction of 

chaotic dynamics of the hydroecological systems  
 

I. General qualitative analysis (in terms of ordinary differential equations 

or the Arnold analysis) of the hydroecological system pollutants dynamics 

;general dynamics differential equations analysis) 

⇓⇓⇓⇓ 

II. Application of the different chaos-geometric and neural networks  

tests on a  presence of chaotic (stochastic) elements,  functions and 

modes in the geosystem; 

1. Gotwald-Melbournetest; Chirikov test; Naïve model 

tests; 

⇓⇓⇓⇓ 

2. Energy and spectral methods and algorithms: energy and 

power spectra, energy level statistics, random matrix analy-

sis; characteristic distributions of the Wigner-Dyson type 
 

⇓⇓⇓⇓ 

III. Multifractal and quantum geometry of a phase space and 

dynamics of resonances  

3. Computing the fractal parameters, multifractal 

spectra; wavelet analysis; cepstrum analysis 

⇓⇓⇓⇓ 

4. The Packard-Takens algorithm; the advanced au-

tocorrelation function or average initial information 

algorithms; The Green’s function method 

⇓⇓⇓⇓ 

5. Reconstruction of a phase space; Computing 

embedding dimension, correlation dimensions; us-

ing the methods of the correlation integral by 

Grassberger-Procaccia  OR the false nearest neigh-

bor points formalism 
 

⇓⇓⇓⇓ 

IV. Forecasting chaotic dynamics of the complex geosystems 
 

6. Computing the  invariants; The global Lyapu-

nov’s dimension analysis;Kolmogorov entropy 

analysis; The Kaplan-York dimension analysis;  

Method of nearestneighboring points 

⇓⇓⇓⇓ 

7. New methods and algorithms of nonlinear 

forecasting chaotic dynamics of the geosystems 

and ecosystems (“minmax” algorithms, me-

thodsofthe stochastic propagators;  

Neural networks modelling algorithms with 

application of the polynomial or B-spline mod-

els, wavelets etc … 
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In order to reconstruct the corresponding attractor dimension (e.g., [3,5-8]) one 

could use two main standard approaches. The first approach is the well-known corre-

lation integral analysis (e.g. [9]), which is one of the widely used techniques to inves-

tigate the signatures of chaos in a time series. The method introduces the correlation 

integral, C(r), to distinguish between chaotic and stochastic systems.  To compute the 

correlation integral, the standard algorithm by Grassberger-Procaccia [9] is usually 

used. The problem is reduced to computing the next quantity:   

( )
1

2
( ) lim

( 1)
i j

N
i j

i j N

C r H r y y
N n→∞

<
≤ < ≤

= − −
− ∑ ,                            (2) 

where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u δ 0, 

r is the radius of sphere centered on yi or yj, and N is the number of data measure-

ments.  

One of the principally important points of the whole approach to modeling and 

forecasting chaotic dynamics of the geosystems is computing the topological and dy-

namical invariants [3-12]. The latter include, in particular, local and global Lyapu-

nov’s dimensions or Lyapunov’s exponents. It is worth to remind the classical defini-

tion of the Lyapunov’s exponents through e logarithms of absolute values of eigenva-

lues of linearized dynamics focused on the attractor, more precisely:  
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Here, the norm determines the degree of divergence of two adjacent trajectories, 

that is, the master trajectory and the adjacent trajectory with initial conditions 

S(0)+δS(0) (S = F).  It is important to note that the negative dimensions indicate the 

local average compression rate and the positive ones indicate the expansion one. The 

Lyapunov’s exponents are independent of the initial conditions, and do comprise an 

invariant measure of attractor. Usually, the computing of the Lyapunov’s exponents 

allows quickly determine whether the system is chaotic or not.   

In fact, if one manages to derive the whole spectrum of the Lyapunov’s expo-

nents, other invariants and parameters of the system (i.e. Kolmogorov entropy (Kent) 

as well as an average predictability) can be calculated. The Kolmogorov entropy Kent, 

which, according to definition, measures the average rate at which information about 

the state is lost with time. Numerically, the Kolmogorov entropy can be determined 

as the sum of the positive Lyapunov’s exponents.   The estimate of the dimension of 

the attractor is provided by the Kaplan and York conjecture:  

1
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where j is such that 
1

0
j

α
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λ >∑  and 
1

0
j

α
α=

λ <∑ , and the Lyapunov’s exponents λa are 

taken in descending order.It should be noted that there are several algorithms for 

computing  a spectrum of the Lyapunov’s exponents, among which the most common 
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is the method based on the Jacobian mapping. The detailed information about the 

cited characteristics as well as the details of the main computational algorithms to de-

termine the topological and dynamical invariants can be found in Refs. [3-20]). All 

calculations are performed with using “Geomath”, “ScanPoints” PC computational 

codes [3,5,12]. 

 

Some results and conclusion. .The advanced chaos-geometric approach gas 

been applied to modelling and forecasting of the temporal dynamics of fluctuations of 

the nitrates concentrations in the Small Carpathians river’s watersheds in the Earthen 

Slovakia during 1969-1996 years. As starting data, the detailed data s of empirical 

observations have been used for several watersheds in the Small Carpathians region, 

which were carried out by employees of the Institute of Hydrology of the Slovak 

Academy of Sciences [1]. Sampling for nitrates at these stations was carried out twice 

a month during 1991-95. Chemical nitrogen compounds mainly arise from industrial 

and natural fertilizers, industrial and wastewater and NOx emissions from internal 

combustion engines and transport. Nitrates are characterized by significant seasonal 

variability, with their highest values occurring during snowmelt in spring. 

As a typical example, Fig. 1 shows the average monthly nitrate concentrations at 

the Ondava: Stropkov point. According to data [1], until approximately 1988-89 ni-

trate concentrations increased, reaching a maximum of ~ 25 mg l-1 in the spring of 

1989, which was associated with the increasing use of nitrogen fertilizers from year 

to year, after which agriculture became less intensive, causing a decrease in nitrate 

concentrations. 

Below we shortly present the data of numerical experiments on the restoration of 

the embedding dimension (dE), using the method of correlation integral and the algo-

rithm of false nearest neighboring points. In order to calculate the correlation dimen-

sion d2 it one should calculate the correlation integrals C(r) for different embedding 

dimensions. The correlation dimension of the attractor (dA) is defined as the value of 

the correlation dimension, in which it does not change as the embedding dimension 

increases.Table 1 summarizes all the results for the recovery of attractors, as well as 

the calculational data for the K chaotic index (Kсh) and different dynamical and topo-

logical invariants (time delay τ,correlation dimension (d2), embedding space dimen-

sion (dE), Lyapunov’s exponent (λi), Kolmogorov entropy (Кent), Kaplan-York di-
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Fig. 1. Monthly average nitrate concentrations (mg l-1) in the Ondava River 

basin at Stropkov for the hydrological years 1968/69 - 1995/96 
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mension (dL), etc for the for nitrate concentrations in the catchments of the Little 

Carpathians. 

In the case considered, the values of the chaos parameter K in all cases exceed 

0.68, that is, the considered time series are subject to the influence of chaotic dynam-

ics. The analysis of the dynamical and topological invariants shows that, for example, 

the resulting Kaplan- York dimension is very close to the correlation dimension. The 

analysis on the basis of the Lyapunov exponents as well as the other dynamical and 

topological invariants indicates on a pronouncedchaotic dynamics of the correspond-

ing time series.  

To conclude, an advanced version of the chaos-geometric method is adapted for 

modelling the chaotic dynamics of the nitrates concentrations in the Small Carpathi-

ans river’s watersheds in the Earthen Slovakia during 1969-1996 years using such 

chaos theory methods as the Gottwald-Melbourne test, the correlation integral me-

thod, the algorithms of average mutual information, false nearest neighbors, surrogate 

data, methods of analysis based on the Lyapunov’s exponents, Kolmogorov entropy, 

etc. 
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Хецеліус О.Ю., Ігнатенко Г.В. 
 

Хаос-геометричний, нейронно-мережевий та системний аналіз  

і моделювання хаотичної динаміки забруднення складних  

гідроекологічних систем 

 
АНОТАЦIЯ 

Представлено вдосконалений комбінований хаос-геометричний та нейронно-

мережевий підхід до аналізу, моделювання та прогнозування динаміки хаотичного за-

бруднення складних гідроекологічних систем. Метод заснований на використанні оп-

тимізованих методів теорії хаосу та динамічних систем для аналізу часових рядів 

концентрацій забруднюючих речовин. Зокрема, підхід комбіновано використує крите-

рій Готвальда-Мельбурна, метод кореляційного інтегралу, мультіфрактальний фор-

малізм, алгоритми середньої взаємної інформації, помилкових найближчих сусідів, су-

рогатних даних, аналіз на основі показників Ляпунова, ентропії Колмогорова, а також 

нелінійні моделі прогнозу. Як наочний приклад, розглянуто хаотичну динаміку концен-

трацій нітратів у вододілах річок Малих Карпат (Словаччина) протягом 1969-1996 

років та наведені дані обчислень динамічних та топологічних інваріантів.  

Ключові слова: складні гідроекологічні системи, хаотична динаміка процесу забру-

днення, хаос-геометричний підхід, динамічні та топологічні інваріанти. 

 


