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Chaotic dynamics of diatomic systems in an electromagnetic field:
Dynamical and topological invariants

An advanced combined quantum-dynamic and chaos-geometric method for analysis, model-
ling, and forecasting of the chaotic dynamics of diatomic molecules in an intense electromag-
netic field is presented. The method is based on the use of the non-stationary theory of the
Schrddinger equation in the approximation of the density functional and the methods of the
theory of chaos and dynamic systems for the analysis of time series of polarization and other
characteristics of diatomic molecules in an intense electromagnetic field. In particular, the
latter includes the Gottwald-Melbourne test, the correlation integral method , fractal and
multifractal formalism, average mutual information, false nearest neighbours, surrogate data
algorithms, analysis on the basis of the Lyapunov's exponents, Kolmogorov entropy, nonline-
ar forecast models based on algorithms of optimized predicted trajectories, B-spline approx-
imations. As an illustration, the advanced data for the dynamical and topological invariants
(correlation dimension, embedding dimension, Kaplan-York dimension, Lyapunov's expo-
nents, Kolmogorov entropy, etc.) for the diatomic ZrO molecule in a linearly polarized elec-
tromagnetic field are listed.
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Introduction. Currently, the theoretical and experimental study of regular and
chaotic dynamics of nonlinear processes in various classes of quantum systems (in
particular, atomic and molecular systems in an external electromagnetic field) is of
great interest, which is of great importance to many scientific and technical applica-
tions, etc. [1-10]. Chaos theory establishes that apparently complex irregular behav-
iour can be the result of a simple deterministic system with several dominant nonline-
ar interdependent variables. A large number of studies using ideas derived from chaos
science to characterize, model, and predict the dynamics of various system phenome-
na have been witnessed over the last decade (see, for example, [11-23]). The results
of such studies are very encouraging, as they not only showed that the dynamics of
clearly irregular phenomena can be understood from a chaotic deterministic point of
view, but also reported very good predictions using this approach for various sys-
tems, including those that from a classical point of view were considered non-
prognostic. This is a well-known problem of modern chaos theory and dynamical sys-
tems. We should mention the interpretation of chaotic phenomena in quantum sys-
tems through the mechanism of strong nonlinear interaction and overlap of resonanc-
es (overlapping and merging resonances, '"snapshots" of gas resonances,
stochastization of oscillatory motion in molecules, etc). A well-known example of
complex nonlinear chaotic dynamics of finite quantum systems is the chaotic dynam-
ics of a hydrogen atom or Rydberg atoms or more complex molecular systems in an
external electromagnetic field (see [1-4, 23-26]).
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In this article, we present the results of applying the combined quantum-
dynamic and chaos-geometric method [27-30] for analysis, modelling, and forecast-
ing of the chaotic dynamics of diatomic molecules in an intense electromagnetic field
and list the advanced data for dynamical and topological invariants, characterizing
the polarization time series for the diatomic ZrO molecule in a linearly polarized
electromagnetic field of high intensity.

Theoretical method. Our approach to modeling the chaotic dynamics of dia-
tomic molecules in an intense electromagnetic field is based on two blocks, namely,
the universal nonlinear analysis block (e.g.[18-23]), which in our problem actually
includes the computation of time series of level populations, polarization, power
spectrum, and quantum-dynamic block ( e.g. [27-30]). The latter includes solutions of
the time-dependent Schrodinger equation for the diatomic molecule in an electro-
magnetic field, computing the molecule polarization and other parameters. The chaot-
ic behavior could be identified using the Lyapunov's exponent, the separation of two
adjacent trajectories, and the Fourier transform of the temporal evolution of the sys-
tem.

As the applied method has been earlier in details presented in refs. [18-23, 27-
30], including the quantum-dynamic method of description of the diatomic molecule
in an electromagnetic field, below we will restrict yourself only by some fundamental
definitions and key ideas. The quantum-dynamic approach to a diatomic molecule in
an electromagnetic field is based on the solution of the time-dependent Schrodinger
equation, optimized operator perturbation theory and realistic interatomic potential.
For the studied molecule we have used the results of computing in the density func-
tional approximation (e.g. [29,30]). A molecule in the field gets the induced polari-
zation and its high-frequency component can be determined and listed as the corre-
sponding time series [28,30]. It is well known that a spectrum in the regular case of
molecular dynamics consists of a little quantity of the well resolved lines. Principally
another physical and mathematical situation occurs in the case of chaotic dynamics of
molecule in a field. It is easily to understand [30] that the corresponding energy of
interaction with an electromagnetic field can be much higher than the known

anharmonicity constant, 1.€., W > xhQ, and, as result, the corresponding spectrum in
this case becomes significantly more complicated [27, 30].

The main output data of the quantum-dynamical modelling are the correspond-
ing time series for the polarization of a molecule in a resonant electromagnetic field
in a chaotic regime (e.g., [30]). In order to perform the detailed analysis of the chaot-
ic dynamics of the molecule in an electromagnetic field through mathematical analy-
sis of the corresponding polarization time series, and to compute the well-known fun-
damental topological and dynamical invariants of the system in a chaotic regime the
universal chaos-geometric approach (e.g.[18-23,27-30]) has been used, in particular,
the version [28,30].

In general, the chaos-geometric approach includes using a combined set of such
non-linear analysis, dynamical systems and a chaos theory methods as the Gottwald-
Melbourne test, the correlation integral method, algorithms of average mutual infor-
mation, false nearest neighbors, surrogate data, methods of analysis based on the
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Lyapunov’s exponents, Kolmogorov entropy, power spectrum, nonlinear prediction
models, based on algorithms of optimized predicted trajectories, B-spline approxima-
tions, neural network simulation algorithms etc (e.g.[11-18,27-30]).

It is worth to remind that the master task of mathematical modeling molecular
parameter time series for analysis of dynamics of diatomic molecule in a field here is
to determine the corresponding embedding dimension and to reconstruct a Euclidean
space R’ large enough so that the set of points d, can be unfolded without ambiguity
[12,14,18,29]. In accordance with the embedding theorem, the embedding dimension,
dg, must be greater, or at least equal, than a dimension of attractor, d4, 1.e. dg > d.

In order to reconstruct the corresponding attractor dimension (e.g., [12-15,18])
one could use two main standard approaches. The first approach is the well-known
correlation integral analysis (e.g. [15]), which is one of the widely used techniques to
investigate the signatures of chaos in a time series. The method introduces the corre-
lation integral, C(r), to distinguish between chaotic and stochastic systems. To com-
pute the correlation integral, the standard algorithm by Grassberger-Procaccia [15] is
usually used. The problem is reduced to computing the next quantity:

: 2
C(r)=]1vlggomi > H(r=ly= ). (1)

(I<i<j<N)

where H is the Heaviside step function with H(u) =1 for u > 0 and H(u) = 0 for u <0,
r 1s the radius of sphere centered on y; or y;, and N is the number of data measure-
ments. In order to provide the strict verification of the correlation integral algorithm
analysis results, it is additionally useful to apply another method, which is called as
the surrogate data method [14, 18]. This approach makes use of the surrogate data,
generated in accordance to the probabilistic structure underlying the original data.
Here we have used the version [18, 28].

One the most important dynamical invariants of a chaotic system are the well-
known Lyapunov’s exponents (e.g., [14-17]). Usually these invariants are determined
as asymptotic average rates. The Lyapunov’s exponents are independent of the initial
conditions, and do comprise an invariant measure of attractor. Usually, the computing
of the Lyapunov’s exponents allows quickly determine whether the system is chaotic
or not. Another master invariant is the Kolmogorov entropy K,,; , which, according
to definition, measures the average rate at which information about the state is lost
with time. Numerically, the Kolmogorov entropy can be determined as the sum of the
positive Lyapunov’s exponents. The estimate of the dimension of the attractor is

provided by the Kaplan and York conjecture:
j

2
dL =j+ .~ s (2)

Jj+l

j Jj+1
where j is such that Zka >0 and Zka <0, and the Lyapunov’s exponents A, are

a=1 a=1

taken in descending order. The detailed information about the cited characteristics as
well as the details of the main computational algorithms to determine the topological
and dynamical invariants can be found in Refs. [11-18, 27-30]).
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Some results and conclusion. Below there are listed the results of computational
analysis of the time dynamics for diatomic molecule ZrO in the electromagnetic field.
According to [25], the parameter W of interaction of an electromagnetic radiation
with a molecule is as follows:

wlem™ |=1203(d,/1,)(S/ Mw,)"” 3)

where, as usually, an electromagnetic field is standardly characterized by the follow-
ing parameter: S = cE /8 (c 1s the velocity of light and F is a field strength), an inter-
atomic distance 7, in A, dipole moment d, in D, o, in cm’', M in a.u.m., and the field
parameter S in GW/cm®. The set of the ZrO molecular constants and electromagnetic
field parameters is listed in Table 1 [28,31,32].

It 1s easily to find that the known Chirikov chaotic parameter in our case is

as follows:
1/2

dn=2(Ed/B) " >1. (4)

The typical theoretical time dependence of polarization for ZrO molecule in the

field in a chaotic regime is presented in Ref. [28]. The number of the points and the

concrete time step in analyzing the corresponding time series of polarization are as

follows: n = 7.6-10° and Az = 5-10"*s. In Table 2 there are listed the computational

data for the correlation dimension d,, the Kaplan-York attractor dimension (d;), the

Lyapunov’s exponents (4,), Kolmogorov entropy (K.,,), the Gottwald-Melbourne pa-
rameter Kgw.

From table one could see that the first two Lyapunov’s exponents are positive.

In whole, the data on dynamical and topological parameters demonstrate the availa-

Table 1. Set of the ZrO molecular constants and electromagnetic field parameters

Parameters PbO
o= hQ (cm’) 969.7
wxe= xhQ (cm™) 6.90
B. (cm™) 0.423

D, (cm™) 3.19x10”
dy (D) 2.55
ro (R) 1.72
M (a.u.m) 13.58

W (cm™) 15.5-49.1

Table 2. Correlation dimension d,, the Lyapunov’s exponents (A, i=1,2),
the Kaplan-York attractor dimension (d;), the Kolmogorov entropy (Keuy),
the Gottwald-Melbourne parameter Kgw

Molecule | d, A Ao dy | K | Kow
ZrO 276 | 0.147 | 0.018 | 2.53 | 0.165 | 0.73
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bility of the dynamical chaos elements (indeed the low-dimensional attractor) in be-
havior of diatomic molecule ZrO, interacting with electromagnetic field.

To conclude, an advanced version of the quantum-dynamic and chaos-
geometric method is adapted for modelling the chaotic dynamics of diatomic mole-
cules in an intense electromagnetic field, which is based on the theory of the time-
dependent Schrodinger equation and the apparatus for modelling, analysis, forecast-
ing time series of polarization and other characteristics of molecules using such chaos
theory methods as the Gottwald-Melbourne test, the correlation integral method, the
algorithms of average mutual information, false nearest neighbors, surrogate data,
methods of analysis based on the Lyapunov’s exponents, Kolmogorov entropy, etc.
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I'.B. Icnamenko, T.b. Tkau, 1.B. Iéanoea
XaoTu4HA JTUHAMIKA IBOATOMHHMX CHCTEM B €JIEKTPOMATHITHOMY MOJIi:
JAuHaMivHI Ta TOMOJIOTIYHI iIHBapiaHTH

AHOTALIISA

Ilpeocmasneno  yoockonaneHuul  KOMOIHOBAHUL — KAHMOBO-OUHAMIYHULL mMA  XAOC-
2eoMempudHUlL Memoo 00 aHAli3y, MOOEeN08AHHS, NPOSHO3YEAHHA XAOMUYHOI OUHAMIKU
080AMOMHUX MONEKY]L 8 [HMEHCUBHOMY eleKmpomazHim-womy nolii. Memoo 6asyemvcsi Ha
BUKOpUCMAaHHI HecmayionapHnoi meopii pisuanns Llpedintepy 6 naOnudCenHHi QyHKYioHANy
2yCmuHu i Memodie meopii Xxaocy ma OUHAMIYHUX cucmeMm OJisl AHANI3Y 4aco8ux psoie NoJis-
PU3AYITIHUX MA THUWUX XAPAKMEPUCMUK 080AMOMHUX MOIEKY 8 IHMEHCUBHOMY eleKmpomae-
Him-Homy noni. Memoou meopii xaocy ma cucmem @xmouams, 30kpema, mecm Gottwald-
Melbourne, memoo Kopenayiinozo inmezpany, Mya1bmippakmaivHull Gopmanizm, areopummu
cepeonboi 83aemMHOI iHghopmayii, XUOHUX HAUOIUNCUUX CYCIOI8, CYPOAMHUX OAHUX, MEeMOOU
amanizy Ha ocHosi nokasnukis Jlanynosa, eumponii Koimozoposa, mooeni neninitinoco npo-
2HO3Y HA OCHOBI ANCOPUMMIE ONMUMIZ308AHUX NepeddaueHux mpaekmopiil, B-cnnatinosux an-
poKcumayii ma Hetpomepexcesux arcopummie mowo. B axkocmi intocmpayii HagedeHi 0aHi
00UUCTIeHb OUHAMIYHUX | MONONOSIYHUX THEAPIAHMIE (KOpelAyiliHa pPO3MIPHICMb, DPO3MID-
nicmo exnadenns, posmipricmo Kannana-Hopka, noxasnuxu Jlanynoea, enmponis Konmozo-
poea i m.i.) onsa 0soxamomuoi monexyau ZrO 8 AiHIUHO NONAPUZ0BAHOMY eLeKMPOMACHIMHO-
MY NOJIi 8UCOKOI IHMEHCUBHOCM.

Knrouoei cnosa: 0e6oamomui cucmemu 8 eleKmpoMAsHIMHOMY NOJi, XAOMU4HA OUHAMIKA,
Xaoc-eeomempuyHuil nioxXio, OUHAMIYHI Ma MONONO2IUHI IHBapiaHmu



