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New theoretical approach to dynamics of heat-mass-transfer, thermal  

turbulence and air ventilation in atmosphere of an industrial city  

II. Spectrum of thermal turbulence 

 

In this paper we go on a development of consistent theoretical approach to modelling the 

turbulent regime in the atmosphere of the industrial cities and present the analytical founda-

tions of a new model of thermal turbulence spectrum for atmosphere of an industrial city. 

Special attention is paid to general analytical aspects for accounting of the phenomenon of 

wave or vortex diffusion, which is usually ignored in most works on atmospheric ventilation 

modelling. Redistribution of energy over the spectrum of eddy sizes is usually called a spec-

tral transformation, the study of which is possible only under the condition of real introduc-

tion of nonlinearity into the equation of turbulent motion. The approach presented is imple-

mented into the general theory of heat-mass-transfer, thermal turbulence and air ventilation 

in atmosphere of an industrial city, including an improved theory of atmospheric circulation 

in combination with the hydrodynamic modelling, method of a complex geophysical plane 

field and the Arakawa-Schubert approach to a quantitative description of convective instabil-

ity in the city’s atmosphere. 

Key words: physics of industrial city’s atmosphere, heat-mass-transfer, thermal turbu-

lence, air ventilation in atmosphere, vortex diffusion. 

 

 

Introduction. One of the most important problems of the modern physics of 

aerodispersed systems, atmospheric and climate systems, physics of atmosphere of 

the urban systems and industrial cities is study of an energy-, heat-, mass-transfer in 

atural continuous environments (e.g.[1-8]). Practically all known modern, as a rule, 

simplified, approaches allow to estimate the temporal and spatial structure of air ven-

tilation in an atmosphere, a transfer of harmful substances in an atmosphere of the in-

dustrial cities significantly and use as the simple molecular diffusion models as sys-

tem of regression equations (e.g. [7-20]). Disadvantages of these approaches are well 

known and became very critical if, for example, the atmosphere contains elements of 

convective instability. 

In our previous papers [21-26] we develop the theoretical foundations of a new 

energy, angle momentum and entropy balance approach to modelling climate and 

macroturbulent atmospheric dynamics, heat and mass transfer at macroscale as well 

as its partial theoretical approach to dynamics of heat-mass-transfer, thermal turbu-

lence and air ventilation in atmosphere of an industrial city. The latter includes an ad-

vanced theory of atmospheric circulation in combination with the hydrodynamic pre-

diction model (with quantitatively correct account of turbulence in the atmosphere at 

local scales) and the Arakawa-Schubert model of cloud convection as well as new 
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theoretical approach to dynamics of heat-mass-transfer, thermal turbulence (as in a 

heat island zone as in a city’s periphery) and air ventilation in atmosphere of an in-

dustrial city.  

In this paper we go on a development of consistent adequate approach to mod-

elling the turbulent regime in the atmosphere of the industrial cities and present the 

key elements of a new model of thermal turbulence spectrum of an industrial city. 

Special attention is paid to general analytical aspects for accounting of the phenome-

non of wave or vortex diffusion, which is usually ignored in most works on atmos-

pheric ventilation modelling. Redistribution of energy over the spectrum of eddy 

sizes is usually called a spectral transformation, the study of which is possible only 

under the condition of real introduction of nonlinearity into the equation of turbulent 

motion. All above said determines the construction of a macro- and meso-

meteorological theoretical foundations of a fundamentally new "Green City" technol-

ogy, which is associated with the development of a complex of new nonlinear-

stochastic hydrodynamic models for the quantitative description of the dynamics of 

atmospheric ventilation of large industrial cities, taking into account meteorological, 

anthropogenic, orographic and other factors, a new generalized approach to the anal-

ysis and modeling of anthropogenic pollution of the atmosphere of industrial cities 

(which is based on the optimized theory of atmospheric ventilation in an industrial 

city in combination with a hydrodynamic forecast model with quantitative considera-

tion of turbulence in the atmosphere of the urban area, methods of the complex geo-

physical field theory and the Arakawa-Schubert approach to the quantitative descrip-

tion of convective instability applied to the modeling of heat-mass transfer and air 

ventilation in the atmosphere of an industrial city (e.g. [5, 7, 8, 18-25]). 

 

A new approach to modelling the turbulent regime in the atmosphere of in-

dustrial places. In order to make modelling a turbulent regime in atmosphere of a in-

dustrial city (e.g. [7, 8, 21, 22]), an adequate model should be presented to predict 

coupling moments, which is described by the Reynolds system of variables, which 

introduces the concept of the average and fluctuation flow, and itself: 

u u u′= + , v v v′= + , ′ω = ω+ ω , ′Φ = Φ + Φ , ′θ = θ + θ ,           (1) 

where m as usually, Ф is a pressure, θ is a potential temperature; u, v, ware the veloc-

ity components. Then the Reynolds equations are written in the standard form: 

( ) 3

0

j

k j k j j

k j

u p g
u u u u

t x x

∂ ∂ ∂ θ′ ′+ + = − − δ
∂ ∂ ∂ θ

                               (2) 

1u u= , 2u v= , 3u = ω , 
0

1
ij

i j
при

i j

≠
δ = 

=
, 

And if the index in the monomial expression is repeated twice, it means subsumma-

tion from 1 to 3. Further it is natual to add the the standard thermodynamics equation: 

( ) 0k k

k

u u
t x

∂θ ∂ ′ ′+ θ + θ =
∂ ∂

.                                   (3) 

Usually, the Reynolds stresses in turbulent motion are parameterized as follows: 
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( )k j j

k

u u k u
x

∂ ′ ′ = ∆
∂

; ( )k

k

u k
x

∂ ′ ′θ = ∆θ
∂

                         (4) 

where k is a turbulence coefficient, which differs significantly in size for turbulent 

horizontal vortices, horizontally vertical and purely vertical vortices. The usual at-

mospheric parameterization with the turbulence coefficient with a very large degree 

of approximation is used in models of the surface layer, where the concept of isotropy 

of the vortex motion in all three directions of space is accepted. But in our case of a 

turbulent atmosphere of an industrial city  where turbulent eddies in the horizontal  

direction differ little in scale from vertical ones, such an approximation is absolutely 

unacceptable. Therefore, it is necessary to apply equations for predicting the Rey-

nolds stresses, which will become the basis of the closure model for nonlinear proc-

esses [7, 8]. The derivation of these equations is carried out on the basis of equations 

(2) according to the following rule: 

( ) 3

0

j

j k k k j k j k j

k j

u p g
u u u u u u u u

t x x

′∂ ′ ′∂ ∂ θ′ ′ ′ ′ ′ ′+ + + − = − σ
∂ ∂ ∂ θ

 

( ) 0k k k k

k

u u u u
t x

′∂θ ∂ ′ ′ ′ ′ ′ ′+ θ + θ + θ − θ =
∂ ∂

.                                 (5) 

The system of closing equations can be written in the following form: 

( )

( )3 3

0

;

i j ji
k i j k i j

k j i

j ji i
i k j k i j j i

k k j i

u u p up u
u u u u u u

t x x x

u uu g u
u u u u u u

x x x x

′ ′ ′ ′∂ ∂′ ′∂ ∂′ ′ ′ ′ ′+ + = + =
∂ ∂ ∂ ∂

 ′ ′∂ ∂′ ′∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′− − − δ θ + δ θ + Φ +  ∂ ∂ θ ∂ ∂ 

 

( )i
k i k i

k i

u p
u u u u

t x x

′ ′ ′ ′∂ θ ∂ ∂ θ′ ′ ′ ′ ′+ ⋅ θ + θ +
∂ ∂ ∂

2

3

0

;
j

i k k i

i k

u g
u u u

x k x

∂′∂θ ∂θ′ ′ ′ ′ ′ ′= Φ − − θ − δ θ
∂ ∂ ∂ θ

 

( )
2

2 2 2k k k

k k

u u u
t x x

′∂θ ∂ ∂θ
′ ′ ′ ′ ′+ ⋅ θ + θ = − θ

∂ ∂ ∂
.                                (6) 

As a result, we have 16 equations regarding the Reynolds stress and moments 

of connection of velocity pulsations with entropy pulsations, since 

lnpdS c d= ⋅ ⋅ θ ,                                                   (7) 

where S is entropy, cp is the specific heat capacity of the isobaric process. 

Then ��=�
�

�
�
�

�������� is the kinetic energy of fluctuation; 
2′θ  is a measure of process 

activity, which is directly related to the entropy dispersion S; iu′ ′θ  is a measure of the 

relationship between dynamic deformations and the activity of the process.  

The unknown quantities in the system of equations (6) can be combined into the 

so-called 4-tensor [7, 8]: 
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2

1 1 2 1 3 1

2

2 1 2 2 3 2

2

3 1 3 2 3 3

2

1 2 3

u u u u u u

u u u u u u

u u u u u u

u u u

′ ′ ′ ′ ′ ′ ′θ

′ ′ ′ ′ ′ ′ ′θ

′ ′ ′ ′ ′ ′ ′θ

′ ′ ′ ′ ′ ′ ′θ θ θ θ

.                                       (7) 

To solve the equations of system (7), it is necessary to know the method of cal-

culating the following values: 

i j k
u u u′ ′ ′ ; 

i j
u u′ ′ ′θ ; 

ji

j i

uu
p

x x

 ′∂′∂′ +  ∂ ∂ 
; i

i

p
x

′∂θ′
∂

.                                 (8) 

To do this, let's represent quantities (8) in the form of certain linear combina-

tions of the tensor component (8) and the parameter  ��=�
�

′
�
�

′�������, which corresponds to 

the kinetic energy of fluctuations, can be found from the equation (with physical ex-

planations of any term): 

( )
2

0

2 2 2k i
k i j k k i

k k k

u b ub g
u u u u p u u

t x x x

∂ ∂∂ ∂ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + = − − ω θ
∂ ∂ ∂ ∂ θ

    (9) 

Advection Turbulent 

diffusion 

Effect of forces of 

tension 

Interaction of  

Reynolds tension 

& averaged motion 

Generation for ac-

count of swimming 

forces  
 

Here g is the magnitude of the acceleration vector due to the planet’s gravity, θ0 

is the equilibrium potential temperature; θ′, p′ are departures from equilibrium val-

ues. The equations for the velocity’s correlates are in details listed in [7, 8] and 

Components of tensor of the turbulent tensions are (spectral modes of velocity field):  
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Then, according to the well-known closing hypotheses, it is possible to write a 

system of relevant equations that are usually used for models of the surface layer of 

the atmosphere: 

1

i j j ki k
i j k

k j i

u u u uu u
u u u b

x x x

 ∂ ∂∂
′ ′ ′ = − λ + +  ∂ ∂ ∂ 
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∂ θ
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2 2

1

1

3 3

j ji i
i j ij

j i j i

u uu b u
p u u b cb

x x l x x

   ′∂ ∂′∂ ∂ ′ + = − − δ + +       ∂ ∂ ∂ ∂    
;                 (11) 

Here c, l1, λi are constants that specify the scale of turbulent eddies and the de-

gree of their influence on the average motion, as well as the anisotropy of atmos-

pheric turbulence. The theories of closure of systems (6) by relations (11) are univer-

sal for all turbulent flows. Specifically for the atmosphere, they are used for the 
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boundary layer, but in a one-dimensional version, namely along the vertical coordi-

nate: x3=z. 

For a specific task (determination of turbulence in the thermal "cap" of a con-

crete industrial city, for example, Odessa or Aleppo or Hamburg or New York etc), it 

would be correct to abandon the universal closing theories of the components of the 

tensor (7) and apply the estimation of the energy spectra of its components in the 

weight fraction of the component b
2
, that is, the kinetic energy of turbulent eddies . 

For example, if ( )1 2 3, , ,ijQ x x x t  are the elements of tensor (7), then its reciprocal in-

verse transformation into an energy structure is [7, 8]: 

( ) ( ) ( ), 1 2 3 , 1 2 3 1 1 2 2 3 3 1 2 3, , , , , , expi j i jQ x x x t E k k k t i k x k x k x dk dk dk

∞

−∞

 = + + ∫ ∫ ∫ , 

( ) ( ) ( ), 1 2 3 , 1 2 3 1 1 2 2 3 3 1 2 3, , , , , , expi j i jE k k k t Q x x x t i k x k x k x dx dx dx

∞

−∞

 = − + + ∫ ∫ ∫ .      (12) 

Next, we apply a comparative energy assessment Ei,j for all components Qij. It is 

natural that E1,1=E2,2, whileE3,3 significantly differs. With isotropic turbulence in all 

three directions, the energy estimation process is simplified. Since we are interested 

in the ventilation of the city in the horizontal direction, we will limit ourselves to a 

comparative assessment b=E1,1. 

Further, while developing the theory of turbulent regime in atmosphere of an in-

dustrial city, operators of approximation of the energy spectrum are applied with the 

help of a linear operator of the type (11) and a coupling coefficient (the turbulence 

coefficient). The components of tensors of the second and third rank describe the 

processes of nonlinear diffusion and interaction with the mean motion. During diffu-

sion, the process of crushing large vortices into smaller ones is carried out, and when 

interacting with the average movement, in addition to crushing, there is also a reverse 

process in nature, during which the size of turbulent vortices stabilizes.  

The linear operator is capable of approximating only the linear step part of this 

process, and equally at all intervals of the spectrum. This is the main drawback of lin-

ear closing theories, i.e., in linear closing, only the process of fragmentation (dissipa-

tion) takes place over the entire spectrum interval and there is no process of thicken-

ing of turbulent vortices due to the merging of energies of small vortices. This clearly 

contradicts real natural processes, because the laminar flow, passing into the turbulent 

flow regime, breaks down on the inhomogeneities of the friction layer, which are not 

directly related to the nature of the turbulence itself. The vortices, entering the free 

flow mode, should stabilize in size depending on the molecular viscosity of the car-

rier or on the turbulent viscosity of previously existing turbulent molecules in the 

medium. It is obvious that the flow, passing through urban buildings, for example, 

due to collision with it, breaks into a series of vortices that are not balanced with the 

physical properties of its carrier, and then in free flow it stabilizes in both directions 

of the spectral interval. Such an effect can be convincingly described within the 

framework of fractal approaches. The same effect occurs in oncoming traffic streams 

that merge. This is where the term "turbulent viscosity" becomes clear, which is a 

pure form of molecular friction. 
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It is important to note that, since the meaning of the researched process lies in 

the correct description of the process of stabilization of turbulent vortexes, which are 

directed differently on separate intervals of the spectrum, then the linear theory natu-

rally only distorts the solution, without introducing useful information into it. Ac-

cording to the linear theory, diffusion from the source is uniformly spread by a spot 

in isotropic space, while in real diffusion, impurities are captured by large vortices 

and carried by the flow to much greater distances. This process was called wave or 

vortex diffusion. It should be noted that this completely clear aspect is still ignored in 

most works on atmospheric ventilation modelling. Redistribution of energy over the 

spectrum of eddy sizes is usually called a spectral transformation, the study of which 

is possible only under the condition of real introduction of nonlinearity into the equa-

tion of turbulent motion. In principle, the phenomenon of vortex diffusion must first 

be described within the framework of an adequate nonlinear theory. This, however, 

provokes a significant complication of the mathematical apparatus, as in all non-

linear problems.  

In the event of a collision of streams with real urban buildings, this transforma-

tion process is the main one (and there is no the dissipation of energy into the spec-

trum of micro-pulsations). Such dissipation was justified in the case of long-term 

movement of the flow over a substrate surface with uniform roughness (for example, 

over a forest, sea or field). In the conditions of the city, impurities from the source of 

pollution can be transferred to much greater distances than during normal diffusion, 

which introduces ambiguities and creates known problems during the development of 

recreational activities. As a rule, the application of linear theories of turbulence for 

the territory of the city is unpromising. This explains why there is still no scientifi-

cally based program for the theoretical study of the processes of the spread of harm-

ful impurities in the atmosphere of industrial cities. Moreover, at present, in the con-

ditions of the growth and emergence of new modern megacities, as a rule, the analy-

sis of possible atmospheric ventilation is not carried out, taking into account physical, 

geographical, climatic, chemical and other factors. 

 

A new model of thermal turbulence spectrum of an industrial city. Let us 

consider further the effect of thermal turbulence in an industrial city. It is interesting 

to note that the processes in the thermal "cap" of the city can be determined by anal-

ogy with the known soliton of fog formation of the "local" type (e g. [21-23]), which 

has its own wave and turbulent structure. These structures are tightly connected to 

each other. Namely, the energy spectra of harmonics of Fourier or Fourier-Bessel 

transformations can be considered as a spectrum of waves and as a spectrum of turbu-

lent eddies. This is clear from the theories of energy estimates of the spectrum of tur-

bulent pulsations for the urban system. Spectral transformation formulas (12) use the 

spectral basis of Fourier series, or the Fourier integral. At the same time, the spectral 

basis of the Fourier-Bessel series for the Fourier-Bessel integral corresponds more 

closely to the equations of atmospheric dynamics (see, for example, [7,8]). 

Given the fact that the spectral-energy function of turbulence is developed only 

for the Fourier integral, it is more convenient to express it for the Fourier-Bessel basis 

using, for example, the theory developed in [7,8] in spherical functions, and then use 



Фізика аеродисперсних систем. – 2023. – № 61. – С.165-175 

171

in specific algorithms of the formula of connection of spherical functions with Bessel 

functions. The searched formula has the following standard form: 

2

2

1
lim 1 ( )

2

m

n mmn

z
P J z

n n→∞

  
− =  

  
.                                   (13) 

In Eq. (13) m

nP  is the adjoined Legendre polynomial, Jm is the Bessel function 

of the first kind. The most notable property of the tensor vector of spherical functions 

,

l

m nT  is that they satisfy the multiplication formula: 

, , , ,

, , , , , , ,

k l
l k l k v l k v v

m n p s m p m p n s n s m p n s

v k l

T T C C T
+

+ + + +
= −

= ∑ ,                           (14) 

Here , ,

, ,

l k v

m p m pC + , 
, ,

, ,

l k v

n s n sC +  are the Clebsch-Jordan coefficients, which can be calculated by 

the standard formula: 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 2

1

1 2

1 1 2 1 2 1 2,l ,l

j,k, j

1 2 2 1 2
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max , 2 1 2

2 1 ! ! ! ! 1 !

! ! ! ! !

!

1 ! ! 1 ! 1 !

l

k

l k s
l

s j k l l

l l j l j k l l l l l l l l l
C

l j l k l k l j k l l l

i l s l s j

s s j k s l l l l s

+

+ −

= + −

+ + − − − + + − + + +
×

− + − + + + −

− + + −
×

− − − − + + + + +∑
     (15) 

where the lower left index vector-tensor of spherical functions determines the tensor-

component number of the set (basis) of these functions for each of the components of 

the tensor (in our case, the tensor of turbulent stresses). These quantities are well 

known in quantum mechanics (the useful review is in Refs.[26-28]). By the way, the 

quantum algorithms (see detailed description in e.g. [26-30]) are useful in solving 

problems studied here. Let us further introduce the expansion (see, for example, [7, 

8]): 

�
, 1,

1

l
l

l n n

l n l

V V iV V T
∞

ϕ θ
= =−

= − − =∑∑ ;           �
, 1,

1

l
l

l n n

l n l

U U iU V T
∞

ϕ θ −
= =−
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, 0,

1

l
l

r l n n

l n l

V W T
∞

= =−
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where 

, , ,l n l n l nV v iv= + ;  , , ,l n l n l nU u iu= + , , , ,l n l n l nW w iw= + ; ( )1, 1, cosl in l

n nT e Pϕ= θ ; 

( )1, 1, cosl in l

n nT e Pϕ
− −= θ ; ( )0, 0, cosl in l

n nT e Pϕ= θ .                              (16b) 

The components of turbulent stress tensor are the result of multiplication of series: 
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At the same time onse should write:  
� � ��UV VU= ; � �

r r
V V VV= ; � �

r r
V U UV=                                 (18a) 

on the basis of the symmetry of the tensor component. In spectral form, this follows 

from the fact that: 
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It is obvious from formulas (18) that the tensor of turbulent stresses decom-

poses the corresponding components into series by vector-tensor-spherical functions 

of a certain set indicated by the left subscript: 
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Here, the coefficients of the expansion into the corresponding series of the ten-

sor component are indicated in square brackets. Thus, the components of the turbu-

lent stress tensor are represented linearly, but without the application of "K-theory" 

(e.g.[7, 8]). The meaning of nonlinearity is reduced to the operation of spectral trans-

formation of energy by wave vector. 

 

Conclusions. Above, we outlined the fundamental, analytical aspects of a new 

approach to interpreting the process and modelling thermal turbulence in the atmos-

phere of a standard industrial city. It should be noted that this block of general theory 

should then naturally be coupled with the theory of turbulence in the atmosphere near 

urban areas. The principal new moment here is in the further possibility of applica-

tion the theory of a plane complex field for calculating air circulation in an industrial 

city’s periphery. Within this approach an air flux velocity over a city’s periphery in a 

case of convective instability (the standard situation for the sea industrial city of the 

Odessa type) can be found by method of plane complex field theory (in analogy with 

the Karman vortices chain model) [7,24]:  
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Here kΓ – circulation on the vortex elements, created by clouds, kb – co-ordinates of 

these elements, Γ  – circulation on the standard Karman  chain vortices of, l  – dis-
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tance between standard vortices of the Karman  chain, ς  – co-ordinate of the convec-

tive perturbations line (or front divider) centre, kl−0ς  – co-ordinate of beginning of 

the convective perturbation line, kl+0ς – co-ordinate of end of this line. The indicated 

parameters are the input model ones and explained in details in Ref. [7, 8]. 

It is interesting to remind that the processes in the thermal "cap" or heat island 

zone can be defined by analogy with the known soliton of fogging as a "locale", 

which has its own wave and turbulent (or chaotic) structure. These structures are rig-

idly connected to each other. Namely, the energy spectra of harmonics of the Fourier 

or Fourier-Bessel transforms can be understood both as a wave spectrum and as a 

spectrum of turbulent vortices (е.g. [7,21]). Specific model applications of the pre-

sented approach will be considered in the subsequent works. 
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Новий теоретичний підхід до динаміки тепло-масо-переносу, теплової 

турбулентності і вентиляції повітря в атмосфері промислового міста 

II. Спектр теплової турбулентності 

 
АНОТАЦІЯ 

У даній роботі розробляються фундаментальні аналітичні основи нового послідов-

ного теоретичного підходу до моделювання турбулентного масо-тепло-переносу в 

атмосфері промислових міст і представлені ключові елементи нової моделі визначення 

спектру теплової турбулентності промислового міста. Особливу увагу приділено зага-

льним аналітичним аспектам визначення та кількісного урахування  достатньо склад-

ного феномену  хвильової або вихрової дифузії, яке зазвичай ігнорується в більшості 

сучасних підходів до моделювання атмосферної вентиляції промислових міст. Пере-

розподіл енергії по спектру вихрових розмірів зазвичай називають спектральним пере-

творенням, вивчення якого можливе лише за умови реального внесення нелінійності в 

рівняння турбулентного руху. Представлений підхід імплементується  до загальної 

теорії тепло-масо-обміну, турбулентності та вентиляції повітря в атмосфері проми-

слового міста у комбінації з методом комплексного геофізичного плоского поля та уза-

гальненим підходом Аракави-Шуберта до кількісного опису конвективної нестійкості 

в атмосфері промислового міста. 

Ключові слова: фізика атмосфери промислового міста, тепломасопереніс, теплова 

турбулентність, вентиляція повітря в атмосфері, вихрова дифузія. 

 


