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Modeling of water hammer effect during the single cavitating bubble 

oscillation 

The paper presents the results of an analytical study of the vapor-gas bubble dynamics in 

cavitation processes, giving consideration to the liquid compressibility. The study is based on 

the concept that cavitation effects are directly related to the occurrence of hydraulic shock on 

the surface of an extremely compressed bubble. The purpose of this work is to study cavitation 

bubble dynamics accounting for the spherical water hammer effects. An equation for the bub-

ble dynamics was obtained, which includes the coefficient of liquid adiabatic compressibility 

β  as a basic parameter that is directly related to the liquid compressibility. For 0=β  this 

equation reduces to the classical Rayleigh-Plesset equation for incompressible liquids. The 

results of a computational experiment performed within the framework of the modified model 

are presented for which the behavior of a cavitation bubble both in compressible and in in-

compressible water was analyzed. Based on a detailed analysis of the results obtained, it is 

shown that over time cµτ 1∝∆ .the compressed bubble is in the state of a supercritical fluid 

with temperature up to 2000 K and pressure of about 400 MPa. The potential energy of the 

compressed liquid, in the form of a powerful acoustic pulse, emitted by the bubble at the stage 

of its collapse, is irreversibly dissipated in the surrounding liquid. 

Key words: hydrodynamic cavitation, bubble dynamics, liquid compressibility, spherical 

water hammer, acoustic impulse 

 

 

Introduction. The problems of cavitation bubble dynamics have attracted the 

attention of the scientific and industrial community for decades for many applica-

tions. To date, it has been established that the effects of cavitation can only be ade-

quately predicted with an allowance for the liquid compressibility. In the existing 

cavitation models, describing the dynamics of a single bubble, the classical Rayleigh-

Plesset equation, which has been derived without taking into account the liquid com-

pressibility, is used as the basic motion equation [1–9]. 

Despite recent advances in high-speed photography and holography, experi-

mental studies are still unable to provide the necessary information about the final 

stage of the bubble collapse on a nanosecond scale. The experimental results are lim-

ited by the resolution in space and time, especially for micro-bubbles whose size and 

period are at 10
−6

 m and at 10
−6

s. 

Theoreticalstudiesofcavitationareaimedatdevelopingbubbledynamicsmodelsthatu

sevariousmodificationsoftheRayleigh–Plessetequation with dueaccount of compressi-

bility effects. Currently, there is a set of approximate equations having the same de-

gree of accuracy and entire equivalent on formal grounds, but with no clear relation-

ship to each other. These equations are used to study the dynamics of single gas bub-

bles both in the processes of acoustic and hydrodynamic cavitation [1,5,6,8,9]. How-

ever, these studies are mainly focused on the behavior of the inner part of the bubble 
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while the analysis of the surrounding liquid dynamics during the bubble collapse is 

very scarce. 

At the stage of the bubble compression, liquid moves at high speed towards the 

bubble center. When liquid suddenly decelerates on the extremely compressed 

bubblesurfacethe kinetic energy of the liquid ( JEk
810∝ ) is transformed into the 

potential energy of compression with an increase in pressure up to MPa103∝∆p . 

According to the authors of [6], this situation bears a strong resemblance to the water 

hammer phenomenon in a duct. As the liquid flow is halted by the abrupt closing of a 

valve, pressure waves propagate upstream, reflect at the duct inlet, travel downstream 

to the valve. In the present case the role of the valve is played by the bubble interface, 

which opposes the inward liquid flow. 

The water hammer phenomenon is well known to be an exceptional case in hy-

draulics, when the liquid compressibility need be accounted for [10]. Therefore, it is 

interesting to evaluate the possibility of using this phenomenon in modeling the dy-

namics of cavitation bubbles in a compressible liquid. 

This article discusses some features of the gas bubble oscillations in a compress-

ible liquid based on the mathematical model developed in our previous works [4,7]. 

The focus of this work is to study the physics of compressible cavitation flows and 

predict the patterns of oscillation and collapse of gas-vapor bubbles, taking into ac-

count the spherical water hammer effects. 

Formulation of the problem.Consider a spherical bubble with initial radius 0R

incompressible and slightly viscous liquidat pressure 0lp , temperature 0lT and density

lρ . The bubble contains saturated vapor at pressure ( )0lsatv Tpp = and non-

condensable gas at pressure 0gp , so that the total pressure of gas-vapor mixture in-

side the bubble is 00 gvb ppp += . The equilibrium condition for a bubble with a liq-

uid is determined by the relation [1,7] 

( ) 00000 2 RTpppp llvgb σ−=+≡ ,    (1) 

where ( )lTσ  is the surface tension. Assuming the gas is ideal and the mass of gas in 

the bubble gm  is constant, the change in gas pressure inside the bubble during its 

compression or growth is determined as 

( ) ( )( )33
00 ττ RRpp gg = .     (2) 

Starting at 0=τ , liquid pressure away from the bubble ∞lp  during a short time

1δτ  decreases to the value 0min ll pp <<  as a result of which the bubble.is activated 

and then grows under the pressure difference ∞− lb pp  to a maximum size maxR  

[1,3-5,,7].At instant 11 δττ = , the liquid pressure ∞lp during a short timeinterval 2δτ  

increases from minlp to a final value ( ) 0lfinlsat ppTp ≤<< . As a result, the bubble 

is rapidly compressed both under the pressure difference bl pp −∞ and the sharply in-

creasing capillary pressure ( ) RTlσ2 . The liquid in the vicinity of the bubble moves 

rapidly in the radial direction towards the bubble center. The pressure value inside the 
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bubble bp grows due to a great increase in gas pressure
3−∝ Rpg . When the increas-

ing gas pressure in the bubble becomes equal to the liquid pressure at the bubble wall

( ) ( ) ( )τσττ Rpp lR 2+= ∞ , the velocity of the liquid radial motion at the boundary 

with the bubble( τ= ddRvR ) will reach its maximum value maxRv . 

Accordingly, the kinetic energy of the liquid will also be maximum, and the me-

chanical potential energy of the system is considered to be zero ( 0=pE ). 

Thereafter the liquid moves with deceleration until the final stop, and the bubble 

reaches its minimum size minR .With a sudden stop of the liquid on the compressed 

bubble surface the water hammer effect occurs, as a result of which the liquid kinetic 

energy is completely converted into the potential energy of the “liquid-bubble” sys-

tem, and the pressure at the bubble surface Rp  reaches its maximum value. 

Let us analyze how the kinetic and potential energies of the system change dur-

ing the compression and subsequent expansion of the bubble, starting from the instant 

in time, when the potential energy 0=pE . Up to this instant, liquid can be considered 

as incompressible. A spherical coordinate system is used with the origin at the center 

of the bubble, which is considered as spherical throughout the process. 

Kinetic energy.Let us divide the liquid volume in the vicinity of the bubble into 

elementary concentric spherical zones of widthdr . The volume of the layer at a dis-

tancer  from the bubblecenter ( ) drrrV 24πδ = , and the mass of liquid in the layer 

( ) const=rmδ . The liquid velocity at the boundary with the bubble is τ= ddRvR , 

and the radial motion velocity of the liquid layer at a distancer  is 

( ) ( ) 22, rRvrv R τ=τ . Kinetic energy of the liquid inside this layer is 

( ) ( )
2

24
222

2
2

4

2 r

dr
vR

vdrrvm
E Rl

l
kl ⋅=

⋅⋅
=

⋅
= ρπ

πρδ
δ .  (3) 

Integrating the right side of Eq. (3) over the entire volume of the liquid, we find 

the kinetic energy of the radial motion of the liquid surrounding the bubble 

( )
223

4
322

22
323

2

24 R
eff

R
lRl

R

Rlkl
v

m
v

RvR
r

dr
vRE =














⋅==⋅= ∫

∞
ρπρπρπ . (4) 

The kinetic energy of an infinite volume of liquid is found be a finite value, 

equal to 22
Reff vm ⋅ , and mass of this liquid volume. effm is equivalent to the massof 

liquid, occupying three times the volume of the bubble. 

In a compressible liquid, any change in the kinetic energy in the first layer adja-

cent to the bubble surface is transferred to the spherical layer at a distance r  in time 

( ) acr cRr min−=∆τ , where acc is the speed of sound in the resting liquid. The liquid 

velocity near the bubble surface is assumed to be acR cv <  [1-5, 8,9]. When the first 

liquid layer abruptly stops on the surface of the extremely compressed bubble, i.e. 

when the spherical water hammer occurs, the kinetic energy of the liquid entire vol-

ume is converted into potential energy not instantly, as in an incompressible liquid, 

but in a finite time. This time can be estimated by determining a minimum distance 
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from the bubble center minr , beyond which the liquid velocity is negligible compared 

to that near the bubble surface. It follows from the continuity condition that the liquid 

velocity at a distancer is ( ) ( ) 22 rRvrv R τ= . 

Assuming that мкм1min ∝R  and ≤maxRv  10
3
 m/s which corresponds to the 

known experimental data [1,5,6,9], we determine the distance minr  beyond which 

( ) m/s10 3−≤rv . For given conditionsradius mm1min ≈r . Therefore, when a spheri-

cal water hammer is realized, the transformation of kinetic energy into potential ener-

gy in the first layer is transferred to thedistance minr  in time 

мкс1min ∝≈∆ acwh crτ .By analogy with the classical water hammer in pipelines, 

the distance minr  for the spherical water hammer corresponds to the distance from the 

shut-off valve to the pipe inlet from a large reservoir [12]. 

Potential energy.Let us now consider the potential energy change in an elemen-

tary layer in the vicinity of the bubble when the liquid decelerates. A decrease in the 

liquid kinetic energy kEδ  in the layeris accompanied by an increase in potential ener-

gy pEδ , associated with the work of compressing the layer. In a compressible liquid, 

any pressure change in the first layer is transmitted sequentially to each layer at 

sound speed acc . If the liquid is not compressed,the liquid pressure in the layer ( )rpr  

is equal to the liquid external pressure ∞lp , and the layer initial volume is 0Vδ .While 

the layer is compressed, its volume decreases ( 0VV δ<δ ). Excess pressure arising in 

this layer ( ) ∞−=∆ lrr prpp  is determined as 

βδ
δδ
⋅

−
−=∆

0

0

V

VV
p ,      (5) 

whereβ  is the coefficient of the liquid adiabatic compressibility.Taking into account 

Eq.(5), the change in the potential energy of the liquid is defined as 

( ) ( ) ( )
22

0
2

0

2
0

0

0 Vp

V

VV
dVVpdE

VV

pl
βδ

βδ
δδδδ

∆
=

⋅

−
=⋅∆= ∫

−

.  (6) 

The change in potential energy in the layer is equal to the kinetic energy change 

in this layer, which, in accordance with Eq.(3), can be represented as follows 

( ) ( )
22

2
0

2
rlr

kl
vVvdm

dE
∆⋅

=
∆

=
δρ

.    (7) 

Comparing the right-hand sides of Eqs.(6) and (7), we find the relationship be-

tween the change in pressure in the layer and the change in velocityin this layer 

( ) ( )22
rvp ∆ρ=β∆ .      (8) 

The coefficient of adiabatic compressibility is related to the speed of sound by 

the relation 2
accρβ =  [1]. Substituting this valueβ  into Eq.(8), we arrive 

atfamousJoukowsky equation, which determines the amount of excess pressure in a 

liquid during the implementation of the water hammer phenomenon in pipes 

( ) racr vcvp ∆=∆⋅=∆ ρβρ .     (9) 
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The change in pressure in a layer at a distancer  is determined by the excess 

pressure ( ) ∞−=∆ lrr prpp . In the liquid layer adjacent to the bubble surface, the ex-

cess pressure is ∞−=∆ lRR ppp .Expanding the terms on the right side of Eq.(6), we 

represent the potential energy of the liquid in the layer at a distancer  in the form 

( ) ( ) ( )
2

4

2

22
0

2 ⋅⋅−
=
⋅∆

= ∞ drrppVp
rdE lr

pl
βπβδ

.   (10) 

Using Joukowsky equation both for the first layer and forthe layer at a distance 

r , we can write, that( ) RaclR vcpp ρ=− ∞  and ( ) raclr vcpp ρ=− ∞ . This implies 

( ) ( )
2

2

r

R
pp

v

v
pppp lR

R

r
lRlr ∞∞∞ −=−=− .   (11) 

Substituting into Eq.(10) the value of ( )∞− ppr  from Eq.(11), we obtain 

( ) ( )
2

422

r

drRpp
rdE lR

pl
⋅⋅−

= ∞ βπ
.    (12) 

Integrating Eq.(12) within the range from ( )τ= Rr  to ∞→r , and performing 

obvious transformations, we find the current value of the potential energy of the en-

tire liquid volume in the process of bubble compression. 

( ) ( ) ( )
ρ
ββ

πτ
2

3
23

4
22

3 ∞∞ −
=⋅

−
= lR

eff
lR

pl
pp

m
pp

RE ,  (13) 

where the effective mass effm has the same physical meaning as in Eq.(4). 

Bubble dynamics equationfor compressible liquids. The change in the kinetic 

energy of the liquid is equal to the sum of the terms that determine the change in the 

potential energy of the gas in the bubble and of the surrounding liquid. 

τττ d

dE

d

dE

d

dE pbplk −−= .     (14) 

The values τddEk  and τddE pl  are found using, respectively, Eqs.(4) and 

Eqs. (13). The change in the kinetic energy of the liquid per unit time is described as  

( )
ττ

ρπ
τ
ρπ

τ d

dR

d
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RvR

d

vRd
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dE R
R
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2
.   (15) 

The change in the potential energy of the liquid per unit time is determined as 

( )( ) ( )
τ

βπβπ
ττ d

dR
ppRRpp

d

d

d

dE
lRlR

pl
⋅⋅−=−= ∞∞

2232 62 . (16) 

The change in the potential energy of gas compression in a cavitation bubble per 

unit time can be described by the equation, which has been presented in [4] 

( ) 





⋅−= ∞ τ

π
τ d

dR
ppR

d

dE
lR

pb 24 .    (17) 

This equation uses the density and pressure of the gas averaged over the volume 

of the bubble.Substituting the right-hand sides of Eqs.(15), (16) and (17)into Eq.(14), 
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after carrying out obvious transformations, we arrive an equation that describes the 

dynamics of a single spherical bubble of a compressible liquid 

( )
R

vpppp

d

dv RlRRR

ρ
ρβ

τ

22 2323 −−+−
= ∞∞ .  (18) 

At 0=β , Eq.(18) reduces to the classical Rayleigh–Plesset equation, which de-

scribes the bubbles dynamics in an incompressible liquid 

R

vpp

d

dv RRR

ρ
ρ

τ

223−−
= ∞ .    (19) 

In Eqs.(16)–(19)the liquid pressure at the bubble surface Rp and the gas mixture 

pressure bp inside bubble bp are related by the expression [1–5] 

R

v

R
pp Rl

bR
⋅

−−=
µσ 42

.     (20) 

Here ( )ll Tf=µ  is the liquid dynamic viscosity at the boundary with the bubble. 

Bubbledynamics simulation for compressible liquids.To study the bubble dy-

namics in cavitation and boiling processes, the previously created unified mathemati-

cal model DSB was used, which adequately predicts the behavior of a single vapor-

gas bubble in a viscous incompressible liquid with a change in external pressure 

[4,7,11,13]. Model DSB is applicable in the entire temperature range of the liquid 

phase existence up to the critical point [4.13].When studying cavitation effects in an 

incompressible liquid, the Rayleigh-Plesset equation in the form Eq.(19) has used as 

the motion equation, which with account of liquid compressibilityis replaced by 

Eq.(18).The system of equations necessarily includes an independent equation for 

thechange of external pressure in time ( ( )τfpl =∞  ).  

Results and discussion.Using the DSB model, a computational experiment was 

carried out to study the peculiarities of thegas-vapor bubble oscillation both in com-

pressible and incompressible liquids in the processes of hydrodynamic cavitation. 

According to the accepted definition [1,3,4,6], cavitation occurs, if the liquid 

pressure falls sharply below the saturated vapor pressure ( ( )lsatl Tpp < ), that gives 

rise to the activation and growth of gas micronuclei, present in the liquid, and then 

rapidly increases to a value ( )lsatl Tpp > , which leads to bubble compression to 

minimum size. This condition is satisfied in the hydrodynamic cavitation processes, 

where the drop and increase in pressure is due to the passage of a high-speed liquid 

flow through a constricting-expanding nozzle, for example, a Venturi tube [1,11,12], 

With a high-speed flow through the compression cone and the narrow throat of 

the Venturi nozzle, the liquid pressure drops quickly to the value ( )lsatl Tpp << . 

The subsequent increase in the liquid pressure inside the diffuser leads to oscillation 

of the extremely compressed cavitation bubble or its irreversible collapse [11,12].  

By specifying a suitable nozzle geometry, as well as pressure values at the inlet 

of the nozzle 0lp . at the nozzle throat minp and outlet of the nozzle. finp , one can 

calculate,with using the Bernoulli equation,the change in pressure ( )τfpl =  in a 

fixed liquidelement as it flows through the nozzle [11]. 
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The computational experiment was carried out for water with temperature 

K2930 =lT  at the constant pressurevalues: 0lp =3.5 bar, minp =–0.5 bar and finp =1 

bar. The time intervals 1δτ =0.5 ms and 2δτ =1.25 ms, which determine the duration 

of the pressure change from 0lp  to minp  and from minp to finp , respectively, also 

kept constant. The evolution of single vapor-gas nuclei with initial radii 0R = 1 µm, 

2.5 µm, 5 µm, and 7.5 µm was considered. 

Figure 1 shows the comparative characteristics of the bubble oscillations calcu-

lated inboth the incompressible and the compressible water for two activated gas-

vapor nuclei with initial sizes 0R =1µm and 0R =7,5 µm.  

The calculation was carried out by using the Rayleigh Plesset equation in the 

form of Eq.(19) for the incompressible liquid, and using Eq. (18) for the compressible 

that.The change in the external pressure ( )τfpl =∞ , which determines the activation, 

growth and subsequent compression of the bubbles in both the compressible and in-

compressible water, is shown in Figs 1-c and 1-d by dashed lines.  

The data presented in Fig.1.confirm the previously established regularity, that in 

typical cavitating flows the maximum bubble size is about 100 times the initial size 

of the gaseous nucleus [1–3].The figures show also that in an incompressible liquid 

the duration of bubble oscillations until the final collapse is almost five times longer 

than in a compressible liquid.  

 

Fig.1. The change in the bubble radius with time during bubble oscillations in waterwith ac-

counting for the liquid incompressibility (a, b) and compressibility (c, d) for two initial sizes 

of gas-vapor nuclei: 0R =1 µm (a, c) and 0R =7.5 µm (b, d). The dotted lines in figures (c, d) 

show the change in the liquid external pressure ( )τfpl =∞ . Calculation according to the DSB 

model under the conditions: 0lp =3.5 bar; finp  =1 bar; 0lT =393 K 
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This is explained by the fact that, neglecting the liquid compressibility, the ener-

gy dissipation of in an oscillating bubble is due to the influence of interfacial heat and 

mass transfer, the effects of the liquid viscosity at the boundary with the bubble, and 

the degree of compression of the bubble. [4,7]. All these factors were taken into ac-

count in the DEP model.  

Brennen [1], referring to the work of Chapman and Plesset [2], indicates that the 

damping of bubble oscillations is directly related to liquid viscosity, the liquid com-

pressibility through acoustic radiation, and is also due to thermal conductivity. These 

three damping components are conveniently represented as three additive contribu-

tions to the effective viscosity efµ : respectively, the actual liquid viscosity lµ , 

"acoustic” acµ  and "thermal" Tµ  viscosities , which can then be used in the Ray-

leigh-Plesset equation in the form efeflef µµµµ ++=  instead of the actual fluid 

viscosity , The calculated data show that the components  and  are predomi-

nant, rather than the compressibility factor  [1,2]. In the absence of dissipation 

mechanisms such as viscosity, the oscillations would continue indefinitely without 

damping [1]. A similar approach with the introduction of various corrections for the 

effective viscous pressure is also used in other bubble dynamics models to study the 

mechanism of oscillation damping in compressible liquids [5,6,8,9]. 

The data presented in Fig. 1 demonstrate that the damping mechanism of bubble 

oscillations in compressible liquids can be explained within the water hammer con-

cept without introducing any fitting corrections, if the model includes physical factors 

responsible for the bubble behavior at the collapse stage. 

In an incompressible liquid (Fig. 1 a, b), long-term bubble oscillation with a 

slow decrease in amplitude is conditioned by the minor energy losseswhich aredue to 

the liquidviscosity lµ , thermal effects and the kinetics of phase transitions. 

In a compressible liquid, in each oscillation cycle, the energy losses are primari-

ly associated with the conversion of the potential energy of the compressed water at 

minRR =  into a power acoustic pulse, which is irreversibly dissipated in the sur-

rounding liquid. As a result, the compressed gas bubble cannot recover to its previous 

size maxR  due to a significant energy loss, which isshown in Fig.1c,d. 

Figure 2 demonstrates the fact, that in each cycle of oscillations during the liquid 

compression and subsequent stretching near the bubble surface , the bubble radius 

value minR  remains constant and physical parameters of the gas mixture inside the 

bubble ( bb pT , ), reaching their maximum values, also remain unchanged. The dura-

tion of the spherical water hammer ( whτ∆2 ), i.e. the residence time of the com-

pressed bubble at rest, depends on the value minR  in a given oscillation cycle. 

An analysis of the obtained results shows that the main significance of the liquid 

compressibility lies not so much in its relatively weak effect on the bubble dynamics, 

but in the role that it plays in the formation of the water hammer acoustic pulses dur-

ing the bubble recovery following its collapse. With an increase in gas amount in the 

bubble ( )00 , bg pRfm = , the efficiency of the water hammer action decreases.The 

liquid compressibility is known to damp the bubble oscillation amplitude in each os-

lµ lµ Tµ

acµ
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cillation cycle, but it is still unclear to what extent this effect is accurately captured 

by weakly compressible versions of the Rayleigh-Plesset equation [1, 6]. 

In this study, the calculated maximum values of gas pressure inside the bubble at 

the stage of its collapse are MPa400≤bp , and the maximum values of temperature 

are K2000≤bT .According to known experimental and calculated data [1, 4–7], pres-

sure values bp  inside extremely compressed bubbles can reach 10
3
 MPa, and temper-

ature values bT  can exceed 10
4
 K, that is much higher than the critical values of these 

parameters, which for water are 22.5 MPa and 647 K, respectively. 

In such situation, the conception of an interfacial surface loses its physical 

meaning. During µs1∝∆τ  the substance inside a spherical micro-volume will be in a 

state of supercritical fluid (SCF) (neither liquid nor vapor). In this local zone with di-

ameter µm01∝d  an anomalously high temperature gradient ≈∇T 10
8
 K/m appears 

[4,7,13]. These phenomena evidently associated with interfacial instability, that 

canlead to the cavitation bubbledestruction and its fragmentation into many small mi-

cro-bubbles, which is recorded in experiments[1,9]. These effects were analyzed in 

detail in [13] without accounting for the liquid compressibility and, to a certain ex-

tent, were used in the equations of the DSB model. This allows a more correct de-

scription of the behavior of an extremely compressed bubble, since none of the 

known bubble dynamics models gives consideration to possibility of a substance 

transition in the “bubble-liquid” system to the supercritical region 

Most bubble dynamics models deal mainly with spherical bubbles on the as-

sumption that the spherical shape is stable during bubble expansion, but it is not sta-

ble during bubble compression, which, according to the authors, explains the reason 

for the bubble destruction. It is believed that the bubble destruction and fragmentation 

into small micro-bubbles, excludes the possibility of emission of acoustic shock puls-

es into the liquid volume [3,6]. In addition, a correct theoretical study cannot be car-

ried out also because the phase diagram of water for supercritical values of tempera-

ture and pressure is currently not well known. 

 

Fig.2. The change in the liquid velocity at the boundary with the bubble ( )τRv  (a); the bub-

ble radius. ( )τR  (b); temperature. ( )τbT  (c) and pressure ( )τbp  (d) of the gas-vapor mixture 

inside the bubble at the stage of its compression in one of the period of its oscillation in a 

compressible water. 

Calculation according to the DEP model: 0R =2.5 µm; 0lp =3.5 bar; finp =1 bar; 0lT =393 K. 
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Conclusion This analytical study was carried out within the generally accepted 

assumptions about the existence of a liquid-gas interface at all stages of the evolution 

of a spherical cavitation bubble, including the collapse and recovery stages. Obvious-

ly, in terms of further research, it is of interest to consider the development of hydrau-

lic shock on the surface of a collapsing bubble under the conditions of the short-term 

disappearance of the interface and the transition of a substance to the state of a super-

critical fluid. 
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Іваницький Г.К., Целень Б.Я., Радченко Н.Л., Гоженко Л.П. 

Моделювання ефекту гідравлічного удару при осциляції одиночної 

кавітаційної бульбашки 

АНОТАЦІЯ 

Дослідження виконувалося з метою модифікації моделі динаміки парогазової буль-

башки з урахуванням стисливості рідини, що істотно впливає на точність оцінки ене-

ргетичних кавітаційних впливів. Теоретичні дослідження кавітаційних процесів спря-

мовані на розробку моделей динаміки бульбашок, в яких для урахування фактора стис-

ливості застосовуються різні модифікації класичного рівняння Релея - Плесета для не-

стисливих рідин. Ці дослідження зосереджені на поведінці газової фази всередині буль-

башки, тоді процеси в рідині в околиці бульбашки вивчено недостатньо. Вочевидь, що 

природа кавітаційних ефектів прямо пов’язана із виникненням гідравлічного удару при 

миттєвій зупинці радіальної течії рідини на поверхні гранично стиснутої бульбашки. В 

такій постановці динаміка кавітаційних бульбашок досі не розглядалася. Метою даної 

роботи є дослідження динаміки кавітаційної бульбашок з урахуванням дії сферичного 

гідроудару. В плані поставленої задачі одержано рівняння динаміки бульбашки, в яко-

му, як параметр, що враховує стисливість, застосовується коефіцієнт адіабатичної 

стисливості рідини β , пов'язаний зі швидкістю звуку в рідині acc  співвідношенням 

2
accρβ = . При 0=β  рівнянні зводиться до класичного рівняння Релея - Плесета, Наве-

дено результати обчислювального експерименту, в якому досліджено поведінку каві-

таційної бульбашки як в стисливій так і в нестисливій воді. Показано, що протягом 

короткого часу мкс1∝∆τ  стиснена бульбашка перебуває в стані надкритичного 

флюїду з температурою до 2000 К і тиском близько 400 МПа, Потенційна енергія 

стиснутої рідини, у вигляді потужного акустичного імпульсу, що випромінюється на 

стадії колапсу, безповоротно дисипується в навколишній рідині.  

Ключові слова: гідродинамічна кавітація, динаміка бульбашок, стисливість ріди-

ни, сферичний гідравлічний удар, акустичний імпульс.  

 

 

 


