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Modeling of water hammer effect during the single cavitating bubble
oscillation

The paper presents the results of an analytical study of the vapor-gas bubble dynamics in
cavitation processes, giving consideration to the liquid compressibility. The study is based on
the concept that cavitation effects are directly related to the occurrence of hydraulic shock on
the surface of an extremely compressed bubble. The purpose of this work is to study cavitation
bubble dynamics accounting for the spherical water hammer effects. An equation for the bub-
ble dynamics was obtained, which includes the coefficient of liquid adiabatic compressibility
B as a basic parameter that is directly related to the liquid compressibility. For B =0 this

equation reduces to the classical Rayleigh-Plesset equation for incompressible liquids. The
results of a computational experiment performed within the framework of the modified model
are presented for which the behavior of a cavitation bubble both in compressible and in in-
compressible water was analyzed. Based on a detailed analysis of the results obtained, it is
shown that over time At oc 1 uc.the compressed bubble is in the state of a supercritical fluid

with temperature up to 2000 K and pressure of about 400 MPa. The potential energy of the
compressed liquid, in the form of a powerful acoustic pulse, emitted by the bubble at the stage
of its collapse, is irreversibly dissipated in the surrounding liquid.

Key words: hydrodynamic cavitation, bubble dynamics, liquid compressibility, spherical
water hammer, acoustic impulse

Introduction. The problems of cavitation bubble dynamics have attracted the
attention of the scientific and industrial community for decades for many applica-
tions. To date, it has been established that the effects of cavitation can only be ade-
quately predicted with an allowance for the liquid compressibility. In the existing
cavitation models, describing the dynamics of a single bubble, the classical Rayleigh-
Plesset equation, which has been derived without taking into account the liquid com-
pressibility, 1s used as the basic motion equation [1-9].

Despite recent advances in high-speed photography and holography, experi-
mental studies are still unable to provide the necessary information about the final
stage of the bubble collapse on a nanosecond scale. The experimental results are lim-
ited by the resolution in space and time, especially for micro-bubbles whose size and
period are at 10° m and at 10%s.

Theoreticalstudiesofcavitationareaimedatdevelopingbubbledynamicsmodelsthatu
sevariousmodificationsoftheRayleigh—Plessetequation with dueaccount of compressi-
bility effects. Currently, there is a set of approximate equations having the same de-
gree of accuracy and entire equivalent on formal grounds, but with no clear relation-
ship to each other. These equations are used to study the dynamics of single gas bub-
bles both in the processes of acoustic and hydrodynamic cavitation [1,5,6,8,9]. How-
ever, these studies are mainly focused on the behavior of the inner part of the bubble
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while the analysis of the surrounding liquid dynamics during the bubble collapse is
very scarce.

At the stage of the bubble compression, liquid moves at high speed towards the
bubble center. When liquid suddenly decelerates on the extremely compressed

bubblesurfacethe kinetic energy of the liquid (E; o« 1087 ) is transformed into the

potential energy of compression with an increase in pressure up to Ap o 10 MPa .

According to the authors of [6], this situation bears a strong resemblance to the water
hammer phenomenon in a duct. As the liquid flow is halted by the abrupt closing of a
valve, pressure waves propagate upstream, reflect at the duct inlet, travel downstream
to the valve. In the present case the role of the valve is played by the bubble interface,
which opposes the inward liquid flow.

The water hammer phenomenon is well known to be an exceptional case in hy-
draulics, when the liquid compressibility need be accounted for [10]. Therefore, it is
interesting to evaluate the possibility of using this phenomenon in modeling the dy-
namics of cavitation bubbles in a compressible liquid.

This article discusses some features of the gas bubble oscillations in a compress-
ible liquid based on the mathematical model developed in our previous works [4,7].
The focus of this work is to study the physics of compressible cavitation flows and
predict the patterns of oscillation and collapse of gas-vapor bubbles, taking into ac-
count the spherical water hammer effects.

Formulation of the problem.Consider a spherical bubble with initial radius R

incompressible and slightly viscous liquidat pressure p; (), temperature 7 and density
p;. The bubble contains saturated vapor at pressure p, = pe(Tj9)and non-
condensable gas at pressure p, (), so that the total pressure of gas-vapor mixture in-
side the bubble is pjo = p,, + pgo - The equilibrium condition for a bubble with a lig-
uid is determined by the relation [1,7]

Pbo = Pgo + pv = pio —20(T0)/ Ry » (D
wherec (7} ) is the surface tension. Assuming the gas is ideal and the mass of gas in
the bubblem, is constant, the change in gas pressure inside the bubble during its
compression or growth is determined as

pe(0)=peol®l /(P @)

Starting at 7 =0, liquid pressure away from the bubble p;,, during a short time

ot decreases to the value p; i, << p;o as a result of which the bubble.is activated
and then grows under the pressure difference pp — pj, t0 a maximum size Ry,
[1,3-5,,7].At instant7| = 07y, the liquid pressure p;, during a short timeinterval o7,
increases from pj i, to a final value pg,, (77) << p fin S p1o- As aresult, the bubble
1s rapidly compressed both under the pressure difference p;., — pp and the sharply in-

creasing capillary pressure2c(7; )/ R . The liquid in the vicinity of the bubble moves
rapidly in the radial direction towards the bubble center. The pressure value inside the
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bubble pj, grows due to a great increase in gas pressure pg o R™>. When the increas-
ing gas pressure in the bubble becomes equal to the liquid pressure at the bubble wall
Pr(7)= pio(z)+20/R(z), the velocity of the liquid radial motion at the boundary
with the bubble(vg = dR/dt) will reach its maximum valuevpg ax -

Accordingly, the kinetic energy of the liquid will also be maximum, and the me-
chanical potential energy of the system is considered to be zero (£, =0).

Thereafter the liquid moves with deceleration until the final stop, and the bubble
reaches its minimum size R ,;, -With a sudden stop of the liquid on the compressed

bubble surface the water hammer effect occurs, as a result of which the liquid kinetic
energy is completely converted into the potential energy of the “liquid-bubble” sys-
tem, and the pressure at the bubble surface pp reaches its maximum value.

Let us analyze how the kinetic and potential energies of the system change dur-
ing the compression and subsequent expansion of the bubble, starting from the instant
in time, when the potential energy £, = 0. Up to this instant, liquid can be considered

as incompressible. A spherical coordinate system is used with the origin at the center
of the bubble, which is considered as spherical throughout the process.

Kinetic energy.Let us divide the liquid volume in the vicinity of the bubble into
elementary concentric spherical zones of widthdr. The volume of the layer at a dis-
tancer from the bubblecenter 6V (r)=47272dr , and the mass of liquid in the layer
&n(r)zconst. The liquid velocity at the boundary with the bubble isvp =dR/dr,
and the radial motion velocity of the liquid layer at a distancer is
v(r,r) =vp (I)R2 / r? . Kinetic energy of the liquid inside this layer is

2 2 2
om-v “dmredr)-v 4 o)\ dr
= 5 = (pl ) = (27ZR prR)'—z- (3)
r

Integrating the right side of Eq. (3) over the entire volume of the liquid, we find
the kinetic energy of the radial motion of the liquid surrounding the bubble

OE

00 2 2
4 2 dr 3.2 4 3 VR VR
Ey = (27Z'R PIVR ) Ij;r—z =27R" pjvp =3- [gﬂ'R Yoli 7} = Mefy o 4)

The kinetic energy of an infinite volume of liquid is found be a finite value,
equal tom,g -v%g / 2, and mass of this liquid volume. m,z is equivalent to the massof

liquid, occupying three times the volume of the bubble.

In a compressible liquid, any change in the kinetic energy in the first layer adja-
cent to the bubble surface is transferred to the spherical layer at a distance » in time
A7, =(r — Ryin )/¢4c » Wherec . is the speed of sound in the resting liquid. The liquid

velocity near the bubble surface is assumed to bevgy <c, . [1-5, 8,9]. When the first

liquid layer abruptly stops on the surface of the extremely compressed bubble, i.e.
when the spherical water hammer occurs, the kinetic energy of the liquid entire vol-
ume is converted into potential energy not instantly, as in an incompressible liquid,
but in a finite time. This time can be estimated by determining a minimum distance
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from the bubble centerr,;, , beyond which the liquid velocity is negligible compared
to that near the bubble surface. It follows from the continuity condition that the liquid
velocity at a distancerisv(r)= v (T)R2 / 2

Assuming that Ri, oc1MkM and v < 10° m/s which corresponds to the

known experimental data [1,5,6,9], we determine the distancery,;, beyond which

v(r)< 10~3 m/s. For given conditionsradius i, ®1 mm. Therefore, when a spheri-

cal water hammer is realized, the transformation of kinetic energy into potential ener-
gy in the first layer 1is transferred to thedistance 7y, I1n time

AT,p = Fin /Cae < 1 Mkc By analogy with the classical water hammer in pipelines,
the distancer,,;, for the spherical water hammer corresponds to the distance from the

shut-off valve to the pipe inlet from a large reservoir [12].

Potential energy.Let us now consider the potential energy change in an elemen-
tary layer in the vicinity of the bubble when the liquid decelerates. A decrease in the
liquid kinetic energy oE;, in the layeris accompanied by an increase in potential ener-

gy oE ,,, associated with the work of compressing the layer. In a compressible liquid,
any pressure change in the first layer is transmitted sequentially to each layer at
sound speedc,,.. If the liquid is not compressed,the liquid pressure in the layer p, (r)
1s equal to the liquid external pressure p;,, , and the layer initial volume is oV[;.While
the layer 1s compressed, its volume decreases (0) < 6Vy). Excess pressure arising in
this layer Ap, = p, (r)— Pl 1S determined as

¥ - (5)

Ny - p

wheref3 is the coefficient of the liquid adiabatic compressibility. Taking into account
Eq.(5), the change in the potential energy of the liquid is defined as

Ap =—

g (v =5V )* _(ap)* BV
dE ;= (j)Ap(V)-dV: e f T 2 : (6)

The change in potential energy in the layer is equal to the kinetic energy change
in this layer, which, in accordance with Eq.(3), can be represented as follows

2 2
dm(Av,.) :pz-fW%(AVr) | (7)

Comparing the right-hand sides of Eqs.(6) and (7), we find the relationship be-
tween the change in pressure in the layer and the change in velocityin this layer

2 2
(Ap)*B=p(av, ). )
The coefficient of adiabatic compressibility is related to the speed of sound by

dEy =

the relation f= pcgc [1]. Substituting this valuef into Eq.(8), we arrive

atfamousJoukowsky equation, which determines the amount of excess pressure in a
liquid during the implementation of the water hammer phenomenon in pipes

Ap =+ (p/ﬂ) “Av, = peg Ay, )
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The change in pressure in a layer at a distancer is determined by the excess
pressure Ap,. = p, (r)— Pl - In the liquid layer adjacent to the bubble surface, the ex-
cess pressure is App = pp — Piw -Expanding the terms on the right side of Eq.(6), we
represent the potential energy of the liquid in the layer at a distancer in the form

2 . —_ 2 . 2 .
dEpl(r)z(Ap) f5V0 _4n(p, Plo;) B-ridr- (10)

Using Joukowsky equation both for the first layer and forthe layer at a distance
r, we can write, that(pp — pj )= pcgevr and (p, — Pjoo )= pCgevy - This implies

2
v R
Pr = Pio =(PR = Pio)-== (PR = Pizo) - (11)
VR r
Substituting into Eq.(10) the value of ( Pr — Poo ) from Eq.(11), we obtain

2 — o1 P B RYdr -

r

Integrating Eq.(12) within the range fromrzR(r) to r =00, and performing
obvious transformations, we find the current value of the potential energy of the en-
tire liquid volume in the process of bubble compression.

2
4 ~ Flo
Epl(T)ZE R3 (Pr ;’1 )ﬂ‘3:meﬁf ;

where the effective mass m,g has the same physical meaning as in Eq.(4).

(pR _ploo)zﬁ (13)

5

Bubble dynamics equationfor compressible liquids. The change in the kinetic
energy of the liquid is equal to the sum of the terms that determine the change in the
potential energy of the gas in the bubble and of the surrounding liquid.

dEk :_dEp[ _dpr ‘ (14)
dt dt dr

The values dEy /dr and dE,; /d7 are found using, respectively, Eqs.(4) and

Egs. (13). The change in the kinetic energy of the liquid per unit time is described as

3 2
dE;, :d(27ZR 'OWR)_47zR2p(§v§ N dV_R).d_R‘ (15)
dr dr 2 dr ) drt
The change in the potential energy of the liquid per unit time is determined as
dEp1  d o) o) dR
L =—(27f(pR - Pi) ﬂR3)=6ﬂR2(pR ~pi)” - B-——. (16)
dr dr dr

The change in the potential energy of gas compression in a cavitation bubble per
unit time can be described by the equation, which has been presented in [4]
dE

b dR
—P2 — 47R% (pp _ploo)'(_j' (17)
dr dr

This equation uses the density and pressure of the gas averaged over the volume
of the bubble.Substituting the right-hand sides of Eqgs.(15), (16) and (17)into Eq.(14),
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after carrying out obvious transformations, we arrive an equation that describes the
dynamics of a single spherical bubble of a compressible liquid

2 2
dvr _ PR~ P +3/2(PR — Pio)” B =32 pvk
= : (18)
dr PR
At =0, Eq.(18) reduces to the classical Rayleigh—Plesset equation, which de-
scribes the bubbles dynamics in an incompressible liquid

2
dVR :pR_poO_3/2pVR- (19)
dt PR
In Egs.(16)—(19)the liquid pressure at the bubble surface p g and the gas mixture

pressure py inside bubble pj, are related by the expression [1-5]

B 20 4y -vp
PR =Pb R R

Here 1 = £(T}) is the liquid dynamic viscosity at the boundary with the bubble.

Bubbledynamics simulation for compressible liquids.To study the bubble dy-
namics in cavitation and boiling processes, the previously created unified mathemati-
cal model DSB was used, which adequately predicts the behavior of a single vapor-
gas bubble in a viscous incompressible liquid with a change in external pressure
[4,7,11,13]. Model DSB is applicable in the entire temperature range of the liquid
phase existence up to the critical point [4.13].When studying cavitation effects in an
incompressible liquid, the Rayleigh-Plesset equation in the form Eq.(19) has used as
the motion equation, which with account of liquid compressibilityis replaced by
Eq.(18).The system of equations necessarily includes an independent equation for
thechange of external pressure in time ( pjo = f (2') ).

Results and discussion.Using the DSB model, a computational experiment was
carried out to study the peculiarities of thegas-vapor bubble oscillation both in com-
pressible and incompressible liquids in the processes of hydrodynamic cavitation.

According to the accepted definition [1,3,4,6], cavitation occurs, if the liquid
pressure falls sharply below the saturated vapor pressure ( p; < p gy (T} )), that gives

(20)

rise to the activation and growth of gas micronuclei, present in the liquid, and then
rapidly increases to a value p; > py,, (T7), which leads to bubble compression to

minimum size. This condition is satisfied in the hydrodynamic cavitation processes,
where the drop and increase in pressure is due to the passage of a high-speed liquid
flow through a constricting-expanding nozzle, for example, a Venturi tube [1,11,12],
With a high-speed flow through the compression cone and the narrow throat of
the Venturi nozzle, the liquid pressure drops quickly to the value p; << pg,; (T 1).

The subsequent increase in the liquid pressure inside the diffuser leads to oscillation
of the extremely compressed cavitation bubble or its irreversible collapse [11,12].

By specifying a suitable nozzle geometry, as well as pressure values at the inlet
of the nozzle pjg. at the nozzle throat py;, and outlet of the nozzle. p ,, one can
calculate,with using the Bernoulli equation,the change in pressure p; = f (r) in a
fixed liquidelement as it flows through the nozzle [11].
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Fig.1. The change in the bubble radius with time during bubble oscillations in waterwith ac-

counting for the liquid incompressibility (a, b) and compressibility (¢, d) for two initial sizes
of gas-vapor nuclei: Ry=1 pm (a, ¢) and Ry=7.5 pum (b, d). The dotted lines in figures (c, d)

show the change in the liquid external pressure pj,, = f(z). Calculation according to the DSB
model under the conditions: p;y=3.5 bar; p 5, =1 bar; 7;9=393 K

The computational experiment was carried out for water with temperature
Tj0 =293 K at the constant pressurevalues: p;p=3.5 bar, pp;, =—0.5 bar and p 5, =1

bar. The time intervals 677=0.5 ms and 67p=1.25 ms, which determine the duration
of the pressure change from pjy to pyj, and from pynto p g, , respectively, also

kept constant. The evolution of single vapor-gas nucler with iitial radii Ry= 1 um,

2.5 um, 5 pum, and 7.5 um was considered.

Figure 1 shows the comparative characteristics of the bubble oscillations calcu-
lated inboth the incompressible and the compressible water for two activated gas-
vapor nuclei with initial sizes Ry=1um and Ry=7,5 pm.

The calculation was carried out by using the Rayleigh Plesset equation in the
form of Eq.(19) for the incompressible liquid, and using Eq. (18) for the compressible
that.The change in the external pressure pj, = f (7), which determines the activation,

growth and subsequent compression of the bubbles in both the compressible and in-
compressible water, is shown in Figs 1-c and 1-d by dashed lines.

The data presented in Fig.1.confirm the previously established regularity, that in
typical cavitating flows the maximum bubble size is about 100 times the initial size
of the gaseous nucleus [1-3].The figures show also that in an incompressible liquid
the duration of bubble oscillations until the final collapse is almost five times longer
than in a compressible liquid.
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This is explained by the fact that, neglecting the liquid compressibility, the ener-
gy dissipation of in an oscillating bubble is due to the influence of interfacial heat and
mass transfer, the effects of the liquid viscosity at the boundary with the bubble, and
the degree of compression of the bubble. [4,7]. All these factors were taken into ac-
count in the DEP model.

Brennen [1], referring to the work of Chapman and Plesset [2], indicates that the
damping of bubble oscillations is directly related to liquid viscosity, the liquid com-
pressibility through acoustic radiation, and is also due to thermal conductivity. These
three damping components are conveniently represented as three additive contribu-
tions to the effective viscosity p,r: respectively, the actual liquid viscosity u,

"acoustic” i, and "thermal" up viscosities , which can then be used in the Ray-
leigh-Plesset equation in the form u.r = 1y + per + per instead of the actual fluid

viscosity 4, The calculated data show that the components z4 and u; are predomi-
nant, rather than the compressibility factor x,. [1,2]. In the absence of dissipation

mechanisms such as viscosity, the oscillations would continue indefinitely without
damping [1]. A similar approach with the introduction of various corrections for the
effective viscous pressure is also used in other bubble dynamics models to study the
mechanism of oscillation damping in compressible liquids [5,6,8,9].

The data presented in Fig. 1 demonstrate that the damping mechanism of bubble
oscillations in compressible liquids can be explained within the water hammer con-
cept without introducing any fitting corrections, if the model includes physical factors
responsible for the bubble behavior at the collapse stage.

In an incompressible liquid (Fig. 1 a, b), long-term bubble oscillation with a
slow decrease in amplitude is conditioned by the minor energy losseswhich aredue to
the liquidviscosity £y, thermal effects and the kinetics of phase transitions.

In a compressible liquid, in each oscillation cycle, the energy losses are primari-
ly associated with the conversion of the potential energy of the compressed water at
R =Ry,j, 1nto a power acoustic pulse, which is irreversibly dissipated in the sur-
rounding liquid. As a result, the compressed gas bubble cannot recover to its previous
size Ry, due to a significant energy loss, which isshown in Fig.1c,d.

Figure 2 demonstrates the fact, that in each cycle of oscillations during the liquid
compression and subsequent stretching near the bubble surface , the bubble radius
value R, remains constant and physical parameters of the gas mixture inside the

bubble (7}, pp ), reaching their maximum values, also remain unchanged. The dura-
tion of the spherical water hammer (2A7,; ), i.e. the residence time of the com-
pressed bubble at rest, depends on the value R,;, in a given oscillation cycle.

An analysis of the obtained results shows that the main significance of the liquid
compressibility lies not so much in its relatively weak effect on the bubble dynamics,
but in the role that it plays in the formation of the water hammer acoustic pulses dur-
ing the bubble recovery following its collapse. With an increase in gas amount in the
bubblem, = f (Ry, ppo), the efficiency of the water hammer action decreases.The

liquid compressibility is known to damp the bubble oscillation amplitude in each os-
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Fig.2. The change in the liquid velocity at the boundary with the bubble v (r) (a); the bub-
ble radius. R(r) (b); temperature. 7}, (Z’) (c¢) and pressure py (r) (d) of the gas-vapor mixture
inside the bubble at the stage of its compression in one of the period of its oscillation in a
compressible water.

Calculation according to the DEP model: Ry=2.5 pm; p;o=3.5 bar; p 5, =1 bar; 7;9=393 K.

cillation cycle, but it is still unclear to what extent this effect is accurately captured
by weakly compressible versions of the Rayleigh-Plesset equation [1, 6].

In this study, the calculated maximum values of gas pressure inside the bubble at
the stage of its collapse are pjp <400 MPa, and the maximum values of temperature

are Ty <2000 K .According to known experimental and calculated data [1, 4-7], pres-
sure values pj, inside extremely compressed bubbles can reach 10* MPa, and temper-
ature values 7}, can exceed 10* K, that is much higher than the critical values of these

parameters, which for water are 22.5 MPa and 647 K, respectively.
In such situation, the conception of an interfacial surface loses its physical
meaning. During A7 oc Ius the substance inside a spherical micro-volume will be in a

state of supercritical fluid (SCF) (neither liquid nor vapor). In this local zone with di-
ameter d oc 10 pm an anomalously high temperature gradient VT ~ 10® K/m appears

[4,7,13]. These phenomena evidently associated with interfacial instability, that
canlead to the cavitation bubbledestruction and its fragmentation into many small mi-
cro-bubbles, which is recorded in experiments[1,9]. These effects were analyzed in
detail in [13] without accounting for the liquid compressibility and, to a certain ex-
tent, were used in the equations of the DSB model. This allows a more correct de-
scription of the behavior of an extremely compressed bubble, since none of the
known bubble dynamics models gives consideration to possibility of a substance
transition in the “bubble-liquid” system to the supercritical region

Most bubble dynamics models deal mainly with spherical bubbles on the as-
sumption that the spherical shape is stable during bubble expansion, but it is not sta-
ble during bubble compression, which, according to the authors, explains the reason
for the bubble destruction. It is believed that the bubble destruction and fragmentation
into small micro-bubbles, excludes the possibility of emission of acoustic shock puls-
es into the liquid volume [3,6]. In addition, a correct theoretical study cannot be car-
ried out also because the phase diagram of water for supercritical values of tempera-
ture and pressure is currently not well known.
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Conclusion This analytical study was carried out within the generally accepted
assumptions about the existence of a liquid-gas interface at all stages of the evolution
of a spherical cavitation bubble, including the collapse and recovery stages. Obvious-
ly, in terms of further research, it is of interest to consider the development of hydrau-
lic shock on the surface of a collapsing bubble under the conditions of the short-term
disappearance of the interface and the transition of a substance to the state of a super-
critical fluid.
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MogaenoBaHHs edeKTy riApaBJIivyHOro yaapy npu oCuuIsii 0JMHOYHOL
KaBIiTaAliHHOI OyJIb0OAIKH

AHOTAILILA

Hocniooicennsn ukonysanocs 3 memoio Moougikayii mooeni OUHAMIKY napoeazosoi 6yib-
Oawikuy 3 ypaxye8aHHaMm CIMUCIUBOCIIE PIOUHU, WO ICIMOMHO BNIUBAE HA MOYHICMb OYIHKU eHe-
peemuyHux KasimayitHux enausie. Teopemuyri 00CIIONCEHHS KAGIMAYIIHUX NPOYeCi8 Cnpsi-
MOBAHI HA pO3POOKY Moodenell OUHAMIKU OYIbOAWOK, 6 AKUX Ol YPAXy8anHs (hakmopa cmuc-
JIUBOCMI 3ACMOCOBYIOMbCAL Pi3HI MOOUuGpikayii kiacuunozo pieuanns Penes - [lnecema 0ns He-
cmucausux pioun. Li oocniodcenns 30cepediceni Ha nogedinyi 2azo80i gazu scepeduri OVib-
bawku, mooi npoyecu 6 piOuHi 8 OKOIUYI OYILOAUIKU BUBYEHO HedoCmamHbo. Bouesuow, wo
npupooa KasimayitiHux egexmis npsamo noe s3aHa i3 GUHUKHEHHAM 2i0pasiiuHo2o yoapy npu
MUMMESIt 3ynuHyi padianvHoi meuyii piouHU Ha NOBEPXHI 2PAHUYHO CIMUCHYMOI OynbbawKu. B
Maxitl NOCMAano8yi OUHAMIKA Kagimayiunux 0ynipoauiok 0oci ne posensaoanacs. Memorw oanoi
pobomu € 00CNIOHCeHHs OUHAMIKU KABIMayitiHoi 6y1b0auoK 3 ypaxy8anuam Oii cghepuunozo
2iopoyoapy. B nnani nocmaenenoi 3a0aui o0epaicano pieHsHH OUHAMIKU OYIbOAWIKY, 8 KO-
My, AK napamemp, wo 8paxo8ye CMUCIUBICIDb, 3ACMOCO8YEMbCA Koediyienm adiabamuunoi

cmucaugocmi piounu [3, nog'azanuii 3i WEUOKICMIO 36VKY 6 DIOUHI C,y. CHIGBIOHOUEHHAM

2 . . .
B =pc,.. lIpu B =0 pisusanni 3600umvcst 00 Kiacuuno2o pignanns Penes - [Inecema, Hage-

0eHO pe3yibmamu 0OUUCTIOBANbHO20 eKCNEPUMEHMY, 8 SKOM) O0CHI0NCEeHO NOBeOIHK) KAGi-
mayiunoi 6y1bbawKy K 8 CMUCIUgii maxk i 6 Hecmucaugit 600i. Iloxazano, wo npomszom
KOpomko2o uacy At ocl MKC cmuchena Oyrvbawika nepebyeéac 6 CmaHi HAOKPUMUYHOZO
Gmroidy 3 memnepamyporo 0o 2000 K i muckom oauzvko 400 Mlla, Tlomenyitina enepeis
CMUCHYMOI piOuHY, y U0l NOMYAICHO20 AKYCIMUYHOZO IMAYIbCY, WO GUNPOMIHIOEMbCS HA
cmaoii konancy, 6e3no60pPOMHO OUCUNYEMBCSL 8 HABKOIUWHIT PIOUHI.

Knrouoei cnosa: ciopoounamiuna xasimayis, OuHamixa Oyi60auloK, CMUcIugicms piou-
HU, chepuynutl 2i0pasivHuil Yoap, aKyCmuyHull IMnyisC.



