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Study of the Disperse Composition of Suspensions and Sputtered
Substances by means of Small-Angle Light Scattering

Spatial distribution of the light scattered by a disperse system of particles depends on their
sizes, shapes, positions, etc., which can be used for experimental determination of the param-
eters mentioned. For stochastic systems with the particles’ sizes exceeding the radiation
wavelength, most of the scattered radiation concentrates near the incident beam axis. In this
small-angle approximation, the scattering pattern is especially simple and regular, which en-
ables to develop efficient procedures for the disperse system investigation. We describe the
algorithm for determination of the mean particle radius in the system with lognormal distri-
bution of the particle sizes and negligible multiple scattering. The algorithm’s performance is
demonstrated on the practical example of the ‘‘fog” generated by a gasoline injector. The
ways are discussed for further algorithm generalization and its extension to a non-parametric
analysis of disperse systems with a priori unknown form of the particle sizes’ distribution.

Keywords: disperse system, light scattering, particle size, distribution function, experi-
mental measurement

Introduction. Optical methods for studying the structure of various substances
and physical and chemical processes occurring in them have been used for many
years and have repeatedly proved their effectiveness. Due to the intensive develop-
ment of optical and laser technologies, numerous new possibilities and applications
have emerged in this direction. Optical methods for studying disperse systems based
on the analysis of the characteristics of electromagnetic radiation scattered by a sys-
tem of small particles differing in size, shape, and physical properties appear to be
especially promising and sometimes irreplaceable [1].

A general scheme of optical investigation of disperse systems is as follows [2]
(see Fig. 1). A light beam with known characteristics (most often it is a plane wave or
a Gaussian laser beam) is incident on the system. Let the incident light intensity equal
to [y and 1s the same for all particles composing the system (this is a good approxima-
tion if the incident beam radius exceeds the system total size). Part of the incident
light passes through the system without interacting with particles and forms a beam
of the same spatial structure as the initial one, but somewhat weakened in intensity /;;
the ratio /,/], characterizes the system’s extinction. Another part of the incident light
is absorbed in the system; it characterizes the energy loss in the system. But the most
important is that part of the light that interacts with the system and, afterwards, di-

DOI: 10.18524/0367-1631.2021.59.227310



dizuka aepoaucnepcHux cucrem. —2021. — Ne 59. — C.156-162

verges in various directions. This is scattered light, characteristics of which depend
on the properties of the scattering system: the size and dimensions of the particles,
their physical and chemical nature, shape, etc. Therefore, by studying the characteris-
tics of the scattered light, one can also learn the properties of the scattering system

12].

I (¢.00)

Fig. 1. General illustration of the light scattering by a disperse system

Formulation of the problem. The most important characteristic of the scattered
light is the scattering indicatrix — a function that describes the distribution of scattered
radiation over the angles of a spherical coordinate system ¢ and o (Fig. 1). Let the
scattering indicatrix for a single particle be u(¢, a, by, by, ..., b,), where by, b, ..., b,
are parameters that characterize, in particular, the size, shape, and optical properties
of the particle. With assumption of a low particle density, which allows one to ne-
glect the effects of multiple scattering, and supposing a random arrangement of parti-
cles in the system, we can assume that the scattering from a set of particles is deter-
mined by the sum of contributions from each particle separately [2, 3]. If the particles
are not the same, then the system can be characterized by the distribution function
fby, by, ..., b,) of the particles with respect to the parameters by, b,, ..., b,, satisfying
the normalization condition

[ (B, )dbdb,...db, =1. (1)

In this case, the intensity of light scattered by the system of particles in the di-
rection specified by angles ¢, a 1s determined by the equation

I (g,a)= Nju(¢,a,bl,b2,...,bn )f(b,b,,....b,)dbdb,...db, . (2)

where N is the total number of particles participating in the scattering.
Equation (2) is the basic equation of the problem under consideration. On the
one hand, it allows, knowing the form of the function u(¢, a, by, by, ..., b,), which 1s

determined theoretically depending on the nature and shape of particles, and the dis-
tribution function f (by, b,, ..., b,), to calculate the angular distribution /| ((I),OL) of
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the radiation scattered by the system, i.e. to solve the direct scattering problem. On
the other hand, it shows that, having measured / ((I),OL) experimentally, one can find

the function f(b,, b,, ..., b,) and, thus, determine the important characteristics of the
system and its constituent particles. This operation will solve the inverse scattering
problem.

As can be seen from (2), the solution of the inverse problem requires the solu-
tion of an integral equation. Therefore, this problem is generally more complex and
its solution is not always possible. In this case, various simplifying assumptions aris-
ing from a specific experimental situation can be of great help.

Let us consider the important case when the set of the particles’ parameters {b,
by, ..., b,} consists of a single parameter — the particle radius b; = a. Then, if the
condition a >> A is satisfied, where A is the radiation wavelength, the function

1 ((I),OL) does not depend on the azimuthal angle ¢ and differs significantly from ze-

N
ro only at small ¢: the situation of small-angle scattering is realized [4-8]. In this

case, scattering by a single particle satisfies the conditions of Fraunhofer diffraction

and is described by the function [4]
2

J (ko)
ko ’
where k£ = 2@/A is the radiation wave number, .J; is the notation of the Bessel function
[9]. This function is maximal at o = 0 and has an infinite number of zeros whose posi-
tions are determined by the particle size. Practically important are the zeros situated
closest to the axis z (o = 0), the first of which equals to a = 3.8/(ka).
If all particles of the system have the same size, then the distribution of the scat-
tered radiation over the angle a /7, (oc) 1s just proportional to expression (3). However,

u(o,a)=|2na

3)

it is much more common for the particles to be of different sizes; in aerosol systems,
the particle size distribution is usually described by the lognormal distribution func-

tion [2—4]
2
1 _1{Ina—p
f(a)_—acs 5= exp 2(—0 ) . 4)

Here, the distribution parameters are present: ¢ characterizes the dispersion of
particles in size, so that at o =0 the distribution i1s monodisperse, and p determines
the average particle size a, in accordance with the equality a. = exp(u + 6°/2). From
equation (2), with allowance for (3) and (4), one obtains

(27T)3/2 °° I(lna—pY
[(0)=""— Jaexp ——(—“j le(koca)da. (5)
(ko) o 2\ o
Numerical algorithm and solution. The algorithm for determining the disper-
sion parameters (in the simplest case, the average size a.) is based on comparing the
experimentally measured integral scattering pattern with the theoretically calculated
one (see Fig. 2). In the experimental modeling of the small-angle scattering situation
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we used the gasoline injector producing a nearly monodisperse “fog” of spherical
particles. In general features, the experimental procedure reproduces the scheme of
Fig. 1: a transparent cell containing the suspension was illuminated by the collimated
beam of a semiconductor laser (A = 0.67 um), the near-axis scattered radiation is col-
lected by a focusing lens (not shown in Fig. 1), and the focal-plane pattern was regis-
tered by a CCD web-camera (Fig. 3a). The non-scattered part of the incident beam
with the intensity /; (see Fig. 1) was stopped by an opaque screen whose shadow 1is
seen in the center of Fig. 3a.
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Fig. 2. Scheme of the algorithm for measurement of the disperse system
characteristics

The dependence of the scattered power on the scattering angle a is proportional
to the illumination brightness dependence on the polar radius, which is calculated by
averaging the observed intensity inside the rings of a given radius (shown by thin
black circular contours in Fig. 3a). The resulting experimental curve (red in Fig. 3c¢)
is compared with a set of pre-calculated theoretical curves determined by equation (5)
for different values of the average particle radius; the variance parameter was set as ¢
= 0.01. The value of a. at which the best approximation is observed (estimated by the
least square method) is taken as the real value of the average radius of particles in the
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studied system (in the example of Fig. 3, a. = 1.5 um). Estimation of additional dis-
tribution parameters (variance, etc.) can be performed according to the same scheme.
Discussion and conclusion. The rather good agreement between the experi-
mental and theoretical curves in Fig. 3c testifies for the validity of the approximations
presumed, in particular, of the log-normal particle-size distribution (4). In many prac-
tical cases it is impossible to tell in advance that the particle size distribution function
has a certain form. Then, a nonparametric determination of the distribution function
1s also possible, 1.e. direct finding of a discrete set of the function f{a) values. For ex-
ample, we again restrict ourselves to the case of only one parameter — the particle ra-
dius a. In this situation, the integral equation (2) can be written in the form
Is(oc)zj.u(oc,a)f(a)da. (6)
and, after transformation to the numerical form, reduces to the system of linear equa-
tions
I=Af, (7)
where

is a vector of the measured values of the intensity scattered in directions specified by
the polar angles a,, a5, ... a,, and

S ()
is the sought vector of the distribution function values. The matrix A is composed by
the theoretically calculated values of the scattering indicatrix u(o;, @;) (e.g., those de-
scribed by (3) in the small-angle scattering situations) for equidistant values of a,, a,,

I,

u(ey,a,) u(oy,a,) u(ay,a,)
A= Aa| “(@4 ”(“2_’“2 u(en,a,
u(a,,a) u(a,.a,) ... u(a,.a,)

and Aa =a,,, —a; is the size of the intervals into which the integration domain of (6)

i+1
is divided. Solution of the system (7) is possible if n > m; when n = m this is a simple
system of linear equations, but if n > m the system of equations (5) determines the

vector f statistically by the least-square method:
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Fig. 3. (a) Scattering pattern registered by the camera (the central dark spot is
formed by the opaque “stopper” of the probing beam /;); (b) 3D intensity plot of
the digitalized image (a); (c) Experimental angular intensity distribution (red) and
illustration of the adjusting procedure (colored lines are calculated for different
values of the parameter a,. indicated near each curve).

f=(AA) AL.

Thus, the solution of the inverse scattering problem is achieved. The greater the
difference n — m, the more probable is the stability and regularity of the solution. To
increase the stability, additional regularization procedures can be employed based on
a comparative reliability assessment for various elements of the experimental data
vector I [10].
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bexwacee O.A., Konmyw C.M., Wonoe A.IO.I, Pubax C.C.

JociiKeHHsI JUCTIEPCHOTO CKJIAMY CYCHeH3iil Ta po3NOpOIIeHNX Pe4OBUH

162

MeTOJA0M MAJIOKYyTOBOI0 PO3CilOBaHHA CBiT/I1a

AHOTAILIA

Ilpocmoposuii po3nodin ceimna, po3ciiHo20 OUCNepPCHOI0 CUCMEMOIO YACMUHOK, 3A1eHCUMb
80 ix posmipis, chopmu, pozmauly8aHHsa Moo, wo Modxce Oymu 8UKOPUCMAHO O eKCnepu-
MEHMANbHO20 GU3HAYEHHS 6KA3AHUX napamempis. [[nsa cmoxacmuynux cucmem 3 posmipamu
YACMUHOK, WO NEPesUyIoms 008UCUHY XBUTT GUNPOMIHIOBAHHS, OilbUA YACMUHA PO3CIHO20
C8Iimna KOHYEHmMpYEmMbcsi NoOaU3y OcCi 30HOYI0Y020 NyYKa. Y yvbomy Manoxkymoeomy
HAONUMNCEHHT KapMUHA PO3CIt08AHHS € 0COOIUBO NPOCMOI MA Pe2yIsAPHOI0, WO 00380IAE PO3-
pobumu echekmugni npoyedypu 05t 00CAIONHCeH A napamempis oucnepcHoi cucmemu. Onuca-
HO aneOpumm GU3SHAYEHHS CepeOHbo20 padiyca HaCMUHOK Yy CUcmemi 3 JIOCHOPMATbHUM
PO3NOOINIOM YACMUHOK 30 POIMIPAMU 8 YMOBAX HEXMOBHO MAL020 OA2AMOKPAMHO20 PO3Cilo-
sanHs. Eghexmusnicme ancopummy npooemMOHCMpPO8aAHA HA NPAKMUYHOMY Npuxiadi "myma-
HY", KUl YymMeopoemvcs ()OpPCYHKOI0 O pO3NUNIO8aHHs piokoco naiusa. O620680poiomvcs
WIAXY NOOATbUL020 BOOCKOHAIEHHSL AN2OPUMMY MA U020 NOWUPEHHS HA HenapamempuiHul
aHaniz OUCNEPCHUX cucmem 3 AnpiOpHO HEBIOOMOI (BOPMOI pPO3N0JiNA YACMUHOK 3d
PO3MIpaMU.

Knwuoei cnosa: oucnepcna cucmema, po3cito8anHs c8im.ia, po3mip 4acmuHoK, QYHKYis po-
3n00i1y, eKCnepuMeHmalbHe 8USHAYUEHHS.



