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Mesoscopic metastable liquid in congruent vapor-liquid diagram of argon from 

about zero up to boyle`s temperature (review of FT-model). 

 
Such paradigms of the coupled classical metastability and nonclassical criticality as the ex-

istence of a unified EOS (common for both gas and liquid phases) with its mean-field (mf), so-
called Andrews-van der Waals’ critical point (CP) should be questioned to recognize the re-
alistic stratified structure of a mesoscopic liquid phase. It exists supposedly in the wide range 
of temperatures located between about zero 0T → , K and up to the singular first Boyle’s 

point ( )0BT ρ→ . Its opposite, also singular second Boyle’s point ( )0,B T Kρ →  corresponds 

to the alternative origin for the crossover continuous bounds separating the specific structur-
al strata of a mesoscopic liquid. The region of a heterogeneous l-phase spanning the whole 
temperature range can be termed the non-Gibbsian phase (due to its discrete cluster-like 
structure) without any appeals to the concept of a spinodal decomposition. The respective 

metastable liquid stratum is formed by three segments of supercritical ( )c BT ,T , subcritical 

( )t cT ,T  and sublimation ( )0 tT ,T→  metastable states of a formally incompressible liquid 

constrained by the pair of fixed extensive parameters (N,V). Its location on the CVL-diagram 
is restricted by the new introduced here ml-bound and by the known Zeno-line (ZL) bound. 
Thus, all above-mentioned strata belong to the region of soft fluid with the dominance of 
interparticle attraction. The remaining parts of CVL-diagram are spanned either by the real 
gas state-points and solid state-points (crystalline and/or amorphous) or by the region of 
hard fluid in the classification proposed by Ben-Amotz and Herschbach. 

Key words: mesoscopic liquid, heterogeneous interphase, bounds of metastability. 
 
 

I. Introduction. A variety of precise measurements in metastable vapor (v) and 

liquid (l) pha-ses fail to achieve the classical bounds predicted by the well-known 

spinodal locus. Its concept follows from the idealized notion of a homogeneous fluid 

(f) Gibbsian phase supplemented by the Gibbs’ phase rule and incorporated in the 

conventional Ehrenfest`s classification scheme. For the first-order equilibrium phase 
transition, one assumes that three thermodynamic fields (temperature, pressure, 

chemical potential) of any two coexisting fluid (f), gas (g) or solid (s) phases are 

strictly equal while the macroscopically uniform densities of mass, internal energy, 

entropy, etc. are discontinuous alongside the classical binodal. The classical WMG-

phenomenology developed by van der Waals, Maxwell and Gibbs for an equilibrium 
transition implies also the strict thermodynamic reversibility of condensation (v→l) 
and vaporization (l→v), solidification (l→s) and fusion (s→l) and of the other inter-

mediate types of the transient processes. 

These notes concern directly the problem of a realistic metastability in real sub-

stances with their finite-volume locally-inhomogeneous phases termed below as 

mesoscopic ones. Any transient processes within them occur during the finite time-
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intervals, which are unavoidably thermodynamically irreversible. Two conventional 

theoretical directions cannot be used to attack this complex problem. They are based 

either on the phenomenology of an equilibrium unified EOS [1, 2] or on the its direct 

simulation adopted in the two-phase region by the special methodology of a restrict-
ed ensemble [3, 4]. We refer now an interested reader to the above-cited comprehen-

sive investigations of classical i.e. homogeneous macroscopic metastability. The goal 

of the present work is to emphasize the crucial distinctions of classical concepts from 

the proposed recently methodology based on the concept of a congruent vapor-liquid 

(CVL) diagram [5, 6]. It will be used in the present work. This non-classical structur-

al model of mesoscopic metastability realizes the previously formulated GFA-

principle of global fluid asymmetry [7-9]. 

GFA-principle [5,9] formulated in the framework of FT-model and its FT-EOS 

(FT-denotes the fluctuational thermodynamics [6,7]) rejects completely the classical 

WMG-concept [8] of a unified EOS not only at subcritical ( )cT T− <  but also at su-

percritical ( )cT T+ >  temperatures. In particular, the direct consequence of the new 

fluctuational limit introduced for a metastable liquid (ml) in the present work is the 

unusual location, shape and curvature of such metastable bound. It seems to be much 

more realistic in comparison with a classical spinodal due to the much more better 

correspondence with experiment. We believe that it well-established here continuous 

extension on the supercritical region and/or the extremely low temperatures will be 

interested for experimenters and theorists. For formers the revealed novel, more nar-

row density range of ml-states can be useful as a realistic alternative to the classical, 

experimentally unachievable spinodal. For latters, an argued absence of the tradition-

al vdW-loop (see also simulated results of [4]) in CVL-diagram may be the serious 

stimulus for the further investigation of realistic non-classical metastability. In Sect. 

II we compare the traditional macroscopic VLE-diagram and the proposed 

mesoscopic CVL-diagram as the compatible «working tools» for the interpretation of 

metastable boundaries. Sects. III, IV provide the most essential details and results of 

GFA-principle applied, in particular, to argon. Sect. V contains the further discussion 

of the predictive abilities demonstrated by CVL-diagram in comparison with the most 

advanced theoretical and simulation methodologies developed recently for f-states. 

The most essential relevant results of the present work can be also found in the papers 

[68-70] published recently by V.Rogankov et al. in Physics of Airdispersive Systems 

journal. 

 

II. Principle of global fluid asymmetry and concept of unified equation of 

state. Background of GFA-principle [7-9]. The most general form of FT-EOS con-

tains ( )T , f -dependent coefficients determined at any sub- and supercritical 

( )T ,T− +
 temperatures but, separately, for two main f-phases of g- and l-types 

( )( )/f f f fZ P kT≡ ρ : 
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( ) ( )
( )

( )
1

1

f f ff
FT

f

b T c T a T
Z

b T kT

ρ− ρ
− = −

− ρ
.                                   (1) 

Their crucial macroscopic distinctive feature is the different signs ( )/+ −  of an 

isothermal thermodynamic curvature. Hence, the presumable definition for their 

smoothly convergent isothermal f-segments corresponds to the bound of zero curva-

ture ( )2 2ρ 0
T

P /∂ ∂ = . This locus is well-known for a unified EOS as the curve of 

maxima for the isothermal compressibility ( )ρTχ  or the so-called fluctuation ridge. 

At the application of GFA-principle it should be determined alongside the locus of 

convergence for both f-phases. Third FT-coefficient ( )fc T  of an underlying thermo-

dynamic imperfectness in a real finite-volume (N,V)-system takes into account the 

steady presence of the realistic thermodynamic fluctuations even in the extremely di-

luted but still real g-states. So the usual but physically questionable asymptotics of 

the deterministic ideal-gas (ig) model of a “complete vacuum” ( 1igZ →  at 

ρ 0 0, P→ → ) have been replaced in Eq.(1) by the f-dependent trends for the 

fluctuational about ig-states at ρ 0→ : 

( ) ( )ρ 0 1FT fZ c T→ = − .                                          (2) 

Thus asymptotic first Boyle’s (B) temperature ( )ρ 0BT →  in FT-EOS becomes  sin-

gular in opposite to the conventional B-point. The latter is defined at the small but fi-

nite density. Its ( )ρ B,T -value for which ( )ρ 0
BTZ /∂ ∂ =  as ρ 0→  [13] corresponds 

to the condition ( ) 0BB T =  for the second virial coefficient. 

Two asymptotic values of the critical reduced slope cA  (it is the equivalent of 

Riedel’s similarity factor in the principle of corresponding states (PCS) [10-12]) are 

admissible by FT-EOS along the single the separate vapor-pressure ( ) ( )g vP T P T≈ -

branch complemented by the actual liquid-pressure ( )lP T -branch: 

0 4
gc c l

c c
c c cc

dPT T dP
A ( a ) A (b )

P dT P dT

   = = =   
  

.           (3) 

The former corresponds presumably to the onset of condensation at any cT T− ≤ . The 

latter is the vdW-assumption related to the onset of vaporization in a finite-volume V 

determined for experimental or simulated (N,V)-system. The respective “bifurcation” 

of the critical point’s (CP)-slopes from Eq.(3) is an essential factor for the construc-

tion of CVL-diagram in the supercritical region too. Its significance [6] for the cor-

rect development of any predictive methodology based on the usage of two asymptot-

ic Boyle’s (B) parameters ( )ρ 0BT →  and ( )ρ 0B T →  should be now emphasized. 

Usually one admits [13-15] the strict linearity of so-called Zeno-line (i.e. 1igZ = ) in 

the (T,ρ)-plane to postulate then its predictive ability at the estimation of CP-
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parameters. Three main ingredients of such predictive (geometric and mean-field (mf) 
by nature) procedure are: 

1) the supposedly accurate knowledge [16] of both ρB BT , -parameters follow-ing 

from the precise unified EOS with the long set of empirical coefficients of the 

type that [17,18] developed for argon; 

2) the crucial predictive role of the mf-rectilinear CXC-diameter; 

3) the extrapolation, on the ad hoc basis, of the B-correlations derivable [13-

15,19] from the original vdW-unified EOS with its mf-set of CP-parameters  

{ }0 0 0 0 0ρ 3 8 4c c c c cT ,P , ;Z / ,A= = : 

1 1
1

1 1
vdW

b ab
Z

b bk T T

 ρ ρ
− = − ≡ ρ − − ρ − ρ 

.                        (4) 

on the transformed PCS-set of actual cZ -dependent reduced CP-parameters: 

/ / , / 9 , / 9 /c c c c c cZ T T T Z P P P Zω=ρ ρ = ρ τ = = π = = .     (5) 

Thus, one can recognize the finite ( )f Bc T  – coefficient from Eq.(2) as the fac-

tor of ZL-nonlinearity. Obviously, that the reliable empirical PCS-correlation [11] 

proposed long ago by Timmermans and implied by the first equality from the set of 

Eq.(5) is the necessary condition to connect the other vdW-estimates of reduced B-

variables with the actual CP-ones: 
2

0 0 0 0
, ,

B B B B

T bkT P Pb
b T P

a aT kT

ρ
ρ = = ρ = = = =

ρ ρ
.           (6) 

The noteworthy fact is here that the analogous mf-parametrization of the reduced 

LJ-variables are defined by only two supposedly known molecular parameters of the 

effective diameter σ  and the effective well-depth ε  [10,20]: 
3

* 3 * *, ,
kT P

T P
σ

ρ =ρσ = =
ε ε

.                       (7) 

FT-model goes beyond the PCS-frameworks due to the exact CP-corre-lations 

[6-9] established for any f-dependent molecular effective parameters: 

( )1 /g l c c c c ckT Z kT Pε = ε = − = − ρ ,                                   (8) 

( )
( )

( )
( )
0

3 3

0

3 23 2 1
( ) ( )

4 1 24 1

cc
g l

c c cc c

AA
a b

A A

−−
σ = σ = =

πρ − πρπρ −
.    (9) 

The important conclusion following from GFA-principle and from its basic Table 1 

of the linear model-dependent CP-transformations is an unquestionable inherent cor-

respondence between two main mf-models of a real f-state – vdW- and LJ-ones. We 

mean here that both ones may impart the underlying structure’s features of any f-
phase. For this aim one does not impose on its equilibrium with the other f- phase the 
supposedly necessary requirement of a continuous (i.e. unified) EOS. Contrariwise, if 

the whole two-phase (N,V)-system is still treated as a homogeneous Gibbsian f-phase 

with the continuously changeable density profile, WMG-phenomenology of a first-

order phase transition will always lead to the isothermal vdW-loop below the certain 
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0
cT -boundary. This conclusion is independent on the accuracy to which the molecu-

lar-based imitation of a continuous f-state by the discrete (N,V)-system has been per-

formed. One unavoidably needs (see, for example, polemic rising from the different 

simulated results of metastability in [3,4]) the explanation, from a physical viewpoint, 

for the appearance of the so-called equilibrium unstable f-states located within a 

spinodal. This fictitious, to our mind, notion cannot be attributed to a real fluid. How-

ever, it is widely discussable in the different PCS- and molecular-based theories [11, 

12] as well as in the (essentially mf-ones by nature) simulations known under the 

term of a spinodal decomposition. 

In the framework of GFA-principle [7-9], any real (N,V)-system should demon-

strate the much less dramatic specific features in the entire two-phase range. This 

conclusion is in accordance with our preliminary unconstrained MD-simula-tions 

based on the introduced below short-range FT/LJ-potential (Sect. IV) with two main 

effective CP-dependent parameters ( )ε,σ  from Eqs.(8,9). Both rather narrow meta-

stable ranges of density (in comparison with their spinodal’s estimates) are separated 

by the relatively wide at low subcritical temperatures and about rectilinear but still 

slanting (i.e. non-horizontal in the (P,ρ)-plane) v,l-segments of T−-isotherms. They 

corresponds naturally to the observable in a real fluid vapor-liquid (v,l)-mixture of 

Table 1. Linear ( )c cZ ,A -dependent GFA-transformation of  

LJ-, PCS- and B-variables. 
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small drops and bubbles. Such inhomogeneities steadily coexist, however, at the posi-

tive overall isothermal compressibility in the chosen control volume: 

( )( )1/ / 0T TPχ = ρ ∂ρ ∂ > . We suggest below the term mesoscopic FLUID for these 

realistic f-states located between the macroscopic GAS and LIQUID regions of gauss-

ian fluctuations. Thus, the negative Tχ -value seems to be the artificial result follow-

ing exclusively from a concept of unified EOS. In total, the strict WMG-conditions of 

a phase equilibrium between two Gibbsian f-phases cannot be accurately fulfilled in a 

real finite-volume (N,V)-system. Hence, the saturated pressure of real l-phase ( )lP T  

should be always slightly higher than that in g-phase ( )gP T . We refer now the reader 

to the relevant problem of a thermodynamically small, mesoscopic (N,V)-system 

comprehensively studied by Hill [21] (see also Sect. IV). 

 

Background of a unified EOS and classical metastability [1, 2]. The careful 

analysis of a spinodal’s paradigm can be found in two consecu-tive reviews reported 

by Lienhard and co-authors [1, 2]. To the best of our know-ledge, these relatively old 

works represent until now the state of the art, at least, in the problem of a unified 

EOS. We intend to demonstrate below that its discrepancy with the also unified scal-

ing EOS of asymptotic criticality [22-24] can be removed not only by the conven-

tional crossover Il/mf-phenomenology [25, 26] or by its global renormalization group 

(GRG)-expansion [27-29] on the entire f-range. Indeed, this fundamental problem is 

independently solvable in the framework of CVL-diagram (Sect. IV). The vdW-loop 

(inextricably linked to all above-named mf- and non-classical scaling unified EOSs) 

never appears in FT-EOS (1) due to the mesoscopic [7-9] nature of many real (N,V)-

systems (in which a volume V is often less than a correlation one: V≲ 3
( c )ξ ). Never-

theless, the essential correspondence between the location of a new ml-bound re-

vealed below in the present work and that estimated by Fisher and Zinn [30] on the 

base of Ising-like (Il) criticality should be here emphasized. Both loci (i.e. the non-

classical spinodal [30] and the new ml-bound of CVL-diagram) lie appreciably closer 

either to the binodal for former or to the real CXC for latter than the original mf-
spinodal of vdW-EOS. 

The most appropriate for comparison and very accurate cubic LSB-EOS pro-

posed by Lienhard, Shamsundar and Biney [1] has to be reduced, first of all, to the 

certain specific form. The aim is here the further compatibility with the GFA-

assumptions of Eq.(3). In terms of original PCS-denotations LSB-EOS is: 

( )2 2

a

r b r c dλ

τ
π = −

+  τ + − 

,                                 (10) 

where the volume order parameter ( )c cv v / v−  and the actual cZ  are coupled by 

the spesific reduced density variable: 

( ) ( )/ 1 /c c c cr Z v v v Z= − = −ω ω .                                  (11) 

Since both scaled so dimensional “densities” are coupled too: /c c c cP k T Z= ρ ,  
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one can add these CP-parameters to the adjustable Riedel’s PCS-factor Riα  given in 

[1] by the following linear combination: 

( )
1

1v
Ri

d

d τ=

π
α = = α + λ −λ

τ
.                                  (12) 

All other LSB-coefficients are expressed in terms of the reference α-parameter: 

1/b = α , ( )31a b= − , ( )1 2c b /= −  and ( )2 2 1 4d c b= − . 

The adjustable meaning of λ-parameter in Eq.(12) has been changed below by 

two accepted here FT-identities: Ri cAα ≡ , 
0 4cAα ≡ =  usable in Eq.(3). This replace-

ment leads to the expressions of parameter λ and LSB-EOS itself in the more appro-

priate for comparison forms: 

( ) ( )
2

1 0

4 27

4 1
64

c c
LSB

c
c c c

Z Z
Z

Z
Z Z Zλ+

ω
= −

−ω + ω  τ + ω −  

.              (13) 

Thus the exponent ( )1λ +  of a reduced temperature τ becomes f-dependent and 

has two distinct f-values (see Eq.(3)): 

( ) ( ) ( )01 1 / 1 ( ) 1 1 0 ( )g c c l lA A a bλ + = − − λ + = λ = .      (14) 

To test the predictive capability of both equalities at the given CP-parame-ters 

and for the entire range of (g,l)-transition, the precise CXC-data of argon tabulated in 

[18] have been substituted in Eq.(13). The very informative results of such substitu-

tion are represented in two variants by Figs. 1a, 1b. The failure of the well-
constructed, accurate and flexible but unified LSB-EOS [1] becomes evident from 

Fig. 1b obtained by substitution of the tabular ( )lω τ -densities for Ar [18]. Even the 

sign of revealed curvature for the ( )v lP Tρ   -functional is wrong in this case be-

cause it resembles a spinodal instead of binodal. 
It is straightforwardly to test also that the accepted and reliable [18] CP-values: 

0.2919cZ =  and 5.943cA =  (see Fig. 1b) correspond only to the specific value 

0.6477gλ =  by the reasonable extrapolation of the critical isochore 1ω= : 

1
1 4 1 3 / g

LSB c cZ Z Z
λ +− = − − τ .                                (15) 

It gives the crossing with Zeno-line ( 1
ig
LSBZ = ) at the B-point 2.728Bτ =  (while the 

close value 2.627Bτ =  follows from Table 1). On the other hand, the vdW-value of 

0lλ =  from Eq.(14b) overestimates strongly Bτ  by the same Eq.(15). Besides, the 

trend τ 0→  in Eq.(13) does not provide a possibility to obtain the respective Bω -

estimate. It is in contradiction to the simple Timmermans’ correlation: 3.426Bω =  

following from Table 1. 

To revise the evident failure of a unified EOS at any efforts to describe reasona-

bly and simultaneously both CXC-branches, one should be concerned, firstly, about 

the predictive description just of a single l-phase with its CP-position in accordance 

with the concept of CVL-diagram [5,6]. It is based exclusively on the measurable at 
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Fig. 1. Test of a vapor-pressure functional of density ( )ρv fP T    carried out either by 

substitution of saturated vapor ( )ρg T  – tabular data for Ar [18] in the unified LSB-EOS 

(Fig.1a) or – of saturated liquid ( )ρl T  – tabular data [18] (Fig.1b). Fig.1c compares the 

original vdW-EOS with its critical reduced isotherm τ 1=  used by FT/vdW-EOS to pre-

dict the saturated ( )ρg T -branch [9]. 
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atmospheric pressure 0P  input data of one-phase liquid ( )0ρ P ,T . Then the more con-

vincing and realistic than a spinodal’s hypothesis procedure should be introduced to 

estimate the new locus of ml-limit. At last, the unique feature of the critical vdW-

isotherm τ 1=  illustrated by Fig. 1c has to be used to re-establish consistently with 

the predicted CP-position also the remaining g-branch. 

 

III. Non-classical bound of metastable liquid (ml-limit) in macroscopic 

gaussian (g)-regime of CVL-diagram. The Gaussian (g)- and mesoscopic (m)-
regimes of fluctuations estimated by GFA-principle [5-9]. 

The ultimate predicted results of CVL-diagram for the macroscopic Gaussian 

[5] (i.e. thermodynamic) level of a finite-volume scale ( g ) ( c )V V>  (its correlation es-

timate is denoted here by brackets) and for the underlying mesoscopic level 

( m ) ( c )V V≤  of a discrete (N, V)-system should be in correspondence with the observ-

able (i.e. measurable) thermodynamic properties of any f-states. The used subscripts 

in brackets (g) and (m) correspond to the above volume’s scales termed by FT-model, 

in brief, Gaussian and mesoscopic regimes of a fluctuational behavior. Itself exist-

ence of the supposed correlation boundary ( ( c ) ( c )N ,V ) between them for an equilib-

rium (N,V)-system implies that the given equilibrium f-point (

ρ f ( c ) ( c )N / V N / V= ≈ ; f fT ,P ) belongs to the single-phase EOS-surface [31]. 

CP itself and its close asymptotic vicinity tend to the enormous numbers of the 

simultaneously correlated particles ( c )N  “immersed” in the unknown, a priori, corre-

lation volume ( c )V . Due to this fundamental constraint of criticality, any 

thermophysical measurement or simulation near CP is naturally mesoscopic one (i.e.it 

belongs to m-regime). Hence, such less correlated m-volumes ( m )V  can be attributed 

either to stable or to metastable f-points of an EOS-surface ( )ρP ,T  only if their 

thermodynamic bounds are previously estimated. The well-established results per-

formed by Hill [21], Rowlinson and Widom [32-34], Penrose and Lebowitz [35], 

Scripov [36], Lienhard and co-authors [1, 2], Corti and Debenedetti [3] and by other 

investigators [5, 6, 37-43] become relevant. Our aim below is to show that a common 

“Procrustean bed” of the unified EOS may be the serious restrictive feature of all 

above considerations especially in the extended CP-vicinity. The non-Gaussian be-

havior of non-Gibbsian f-phases is the most striking feature of m-regime. One needs 

the “tool” to take into account here the locally-heterophase fluctuations in a FLUID. 

In particular, authors [3] have developed the appropriate technique of a re-
stricted N,V,T-ensemble for the Monte Carlo algorithm in the framework of a stand-

ard coarse-grained analysis. Its specific feature is the choice, on the ad hoc basis, of 

the certain allowed limit for density fluctuations: δ ∆N N≥  to imitate the about ho-
mogeneous (i.e. Gaussian by nature) f-state inside the metastable and even unstable 

regions. The upper bound on the severity of the δ-fluctuation constraint has been de-

termined by the statistical fluctuation equality [22, 23]: 
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( )2

ρ
δ ρ χT

T

N
kT kT

N P

∆ ∂ ≡ = ≡ ∂ 
.                            (16) 

It was derived for an unconstrained single-phase system in the thermodynamic limit. 

The boundary value N∆  has been calculated by authors [3] for the saturated LJ-

liquid branch ( )l Tρ  taken from the fundamental EOS constructed by Johnson et al 

[10]. More accurately, the separately simulated CXC-data for LJ-fluid, obtained pre-

viously by Lotfi et al [20], were incorporated in this rather complicated unified EOS 

as an auxiliary information. These preliminary CXC-data were approximated by the 

scaling-type empirical correlations, including those for ( )* *
vP T -function. 

We intend to demonstrate that the introduced by GFA-principle the bound rule 
of a unit fluctuation compressibility [5] in Eq.(16) 

( ) ( )( )/ / / 1cT
k T P Z

τ
δ ≡ ∂ρ ∂ = τ ∂ω ∂π =                        (17) 

provides the new very simple estimate of the realistic ml-limit. It corresponds to the 

inverse bulk modulus [44] which is independent on the absolute value of density. We 

extend this thermodynamic equivalent of the direct correlation function integral [5] 

to any l-states including supercritical ones. Their steady existence was corroborated 

by our FT/LJ-based MD-simulation and by its comparison [37,41] with the available 

experimental data on l-metastability [1, 2, 36]. The subcritical locus of ml-limit can 

be obtained without any appeals to the unachievable singular spinodal locus where: 

Tχ → ∞ . In a finite-volume (N,V)-system the local isothermal compressibility Tχ  

and isobaric expansivity Pα  should be always the finite quantities.  An independent 

thermodynamic control of admissible metastable l-fluctua-tions has been provided by 

GFA-principle [5, 6, 9]. It was earlier applied not only to the widely usable for liq-

uids reduced isothermal bulk modulus [44]: 

( )ff f
f

TT T

ZP Z
Z

k T

 ∂ ρ  ∂   ∂
≡ = + ρ     ∂ρ ∂ρ ∂ρ       

.                    (18) 

but also to its isobaric “counterpart”: 

( )f f
f

f PP P

Z ZP
Z

k T

   ∂ ρ  ∂ ∂
≡ = + ρ      ∂ρ ∂ρ ∂ρ        

.                    (19) 

Let us note for comparison that the thermodynamic formalism adopted by the 

different variants of GRG-methodology [27-29, 45] is quite different:  

rep rep
rep rep

T T

f P
Z

kT kT

      ρ ∂ ρ ∂
= ≡ µ −      ∂ρ ρ ∂ρ ρ      

.                (20) 

It starts [27] from the singular purely repulsive hard-sphere (hs-) model repZ  

to switch then on the impact of a pair attraction ( )att rφ  by the recurrent process. We 

have added the second identity in Eq.(20) to emphasize that the implied here Legen-

dre transformation: ( ) ( ), ,P T f Tµ =µρ− ρ  can be fulfilled, in principle, at any arbi-
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trary relationship between two unmeasurable (i.e. untestable by experiment) quanti-

ties of the Helmholtz’s free energy f F / V=  per unit volume and the Gibbs’ chemi-

cal potential G / Nµ =  per particle. This “element of uncertainty” makes the overall 

set of GRG-iterations to be implicitly dependent on the choice of input physical mod-

el. In this context, the use of any locally-singular imitation of a continuous fluid be-

havior by the hard- or soft-spheres (ss-) the rectangular (square) or triangular wells 

(sw- and tw-), the infinitely weak and infinitely long-ranged (Kac’s type potential) or 

finitely strong and short-ranged (Yukawa’s type potential) etc. is not a completely 

satisfactory choice from the physical viewpoint. Such oversimplification leads not 

only to the artificial “symmetrization” of a GRG-predicted CXC for real fluids [28, 

29]. Another undesirable consequence is the serious uncertainty in two main potential 

parameters ( )ε,σ  arisen due to the model-dependent appearance of a third parameter 

(see Sect. IV). 

Instead of an approximated free-energy ( ( )ρ ρf ,T / )-functional of Eq.(20) used 

to derive the GRG-methodology [27], both introduced by Eqs.(18,19) functionals can 

be specified along the actual coexisting CXC-branches of a fluid: ( )ρg gZ T    and 

( )l lZ Pρ   . They tend at the parallel trends f cρ →ρ  to the common CP-value cZ . 

Let us note that this main PCS-factor [11,12] was used in GRG-procedure only as the 

input known parameter, at the determination of CP-location. In contrast to all intents 

and purposes of its authors, the adopted GRG-criterion for finding CP-isotherm 

cT T=  [27] at the given actual cZ  as the curve with an inflection point (it determines 

CP-density cρ ) and with the horizontal tangent CP-isobar cP  is an essentially mf-

one by nature: 

( ) ( )0 0 0 0

2 2

, ,
/ 0 ( ) / 0 ( )

c c c c
T T

P a P b
ρ ρ

∂ ∂ρ = ∂ ∂ρ = .         (21) 

Such classical definition of the so-called Andrews-van der Waals’ CP [32] is legiti-

mate only if the concept of a unified EOS has been implicitly adopted. 

GFA-principle introduces the alternative criterion to determine an unknown CP-

location and, mainly, its cρ  –value [6] by the system of two asymptotically divergent 

CP-equalities: 

( )
0

1

/
c

c

c
T

c
g g T

Z

P Z Z
→

χ = ⋅
 + ∂ ∂ρ ρ  

,                              (22) 

( )
0

1

/
c

c

c
P

c l l P

Z

T Z Z
→

α = ⋅
 + ∂ ∂ρ ρ 

.                               (23) 

Hence, the mf-CP determined by Eq.(21) never appears in CVL-diagram. 

 

CVL-diagram and locus of ml-limit predicted in g-regime. In the practical ap-

plication of the Gibbs’ differential thermodynamic forms (fir instance, to produce the 

non-equilibrium trajectories by integration) one needs an adequate EOS in the whole 

region of f-states. It is of great importance to predict with a reasonable accuracy the 
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experimentally unknown thermophysical properties far away from the well-

recognized ranges: ( )c tT ,T  and ( )c tP ,P  of VLE-diagram. The proposed below meth-

odology of CVL-diagram maps out concrete measures to realize such a promising 

plan. Its essential ingredient and a first step is the construction of a realistic CVL-

sketch in g-regime for its further specification in the whole f-range of interest. 

An example of CVL-diagram shown in Fig. 2 for Ar combines the main ex-

perimental projections of its VLE-diagram [18] represented by symbols with the re-

spective projections of the following four loci: 1) classical spinodal (sp): 

( )ρ 0
T

P /∂ ∂ = ; 2) classical quasi-spinodal [46] (qsp): ( )2 2/ 0
T

P∂ ∂ρ = ; 3) new meta-

stable liquid (ml)-limit: ( )/ / 1
T

P T∂ ∂ρ = ; 4) classical Zeno-line (ZL): ( )ρ 1P / T = . 

The use of B-variables (Table 1) and the choice of basic vdW-EOS (4) for l-phase are 

restricted in g-regime by the equality 
0 4cA =  from Eq.(3b) while cZ -value is actual 

( 0 2919Ar
cZ .=  [18]). The latter is necessary to convert by Eqs.(5) the respective 

equations of above loci into PCS-variables of Fig. 2: 

( )2 2 32 1 ( ) 2 ( )sp spT a P b= ρ − ρ =ρ − ρ ,                     (27) 

( ) ( )3 31 ( ) 1 3 ( )qsp qspT a P b= − ρ =ρ − ρ + ρ ,                (28) 

( ) ( )2 32 1 2 1 2
( ) ( )

2 2
ml mlT a P b

− ρ ρ − ρ + ρ
= =

− ρ − ρ
,               (29) 

( )1 ( ) 1 ( )ZL ZLT a P b= −ρ =ρ −ρ .                          (30) 

We suppose that the collected here bounds provide a realistic information for the 

further detailed study of any simple or complicated substances in the whole range of 

its aggregate g-, l-, f-, s-states. Let us remind, once more, that the final knowledge of 

CVL-diagram in CP-vicinity should include the peculiarities of m-regime (Sect. IV). 

Besides, the reliable information about GAS and FLUID regions shown in Fig. 2 

cannot be obtained without the asymptotic cA -slope for ( ) ( )g vP T P T≈ -branch and 

without the additional ( )lP T -branch originating from the actual CP (Sect.II). There-

fore, we have depicted the standard VLE-diagram by diamond-symbols and the actu-

al CP – by black-square to outline, in particular, a predictive strategy if these CXC-

data are unknown. In this case, the role of CVL-diagram, a priori predicted by 

Eqs.(27-30), becomes especially valuable. 

We consider three congruous domed qsp-, ml-, ZL-loci in the ( ,π τ)- and ( ,π ω
)-projections as the basic ones for the construction of CVL-diagram. The classical sp-

locus is, at best, the subsidiary one. Indeed the formal role of latter is re-stricted by its 

crossing with qsp-locus to predict the Andrews-van der Waals mf-CP in accordance 

with its classical definition by Eq.(21). Itself thermodynamic existence of such point 
of intersection became recently the object of an aggressive polemic [47, 48] between 

Woodcock and some adepts of scaling phenomenology. The first author revealed (er-

roneously from the viewpoint of GFA-principle but rather plausibly in the context of 

empirical, very precise unified EOS of the type [17, 18]) an wide two-di- 
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Fig. 2. CVL-diagram for Ar in g-regime formed by its basic loci (qsp, ml, ZL – 

see comments in text) and comparison with the classical spinodal (sp – see insets 

and dashed lines) imposed on the experimental VLE-diagram. 
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mensional region of supercritical qsp-states in the (P,ρ)-plane termed the mesophase 

by him [48]. Its “bottom”, in accordance with such phenomenology, corresponds to 

the percolation density range of a critical coexistence line formed by the special set 

of sp-states instead of a single mf-CP. This concept has been seriously criticized [48] 

but, unfortunately, in the same framework of a unified EOS hypothesis applied to the 

non-classical criticality. Just the classic WMG-hypothesis is the main obstacle, from 

our viewpoint, to reconcile the above controversial arguments in which authors con-

fuse the quite different notions of actual CP and mf-CP. In accordance with Fig. 2a) 

the first point shown by black square is really the point of intersection for two critical 

loci τ 1=  and π 1=  (Woodcock rejects such a possibility) but it becomes the point in 

which both curves are tangent one to another in two other projections 2b), 2c). At the 

same time, the Gibbs’ phase rule is really in contradiction (Woodcock is right in this 

claim) to the fictitious mf-CP (white square). Moreover, CVL-diagram provides the 

evident alternative explanation for the percolation peculiarities called the supercriti-
cal mesophase in [47, 48]. We have used the more habitual term FLUID for the re-

gion of supercritical f-states located between qsp- and ml-loci. In other words, this re-

gion with the actually negligible but still finite positive curvature ( )2 2/
T

P
+

∂ ∂ρ ≳0 

and the positive compressibility ( )/ 0
T

P +∂ ∂ρ >  separates in CVL-diagram GAS 

from metastable (supercritical here) LIQUID. The evident fluctuation flattening of 

the experimental CXC-top is especially expressive in the ( ),τ ω -plane. 

There are three fundamental B-points of a substance well-established by the asymp-

totic trends of all basic loci in CVL-diagram. The first is B-temperature: 

( )2.625 0Bτ = ω→  which gives the realistic estimate: 395 8BT .=  K for Ar [11,16]. 

The second is B-density ( )3.426 0Bω = τ→ , which corresponds to the value 

1818.6Bρ =  kg/m
3
 for Ar. The mechanical sp-locus tends asymptotically to the B-

point ( )0Bω τ→  too. At last, the common third asymptotic point of the ne gative B-

pressure: ( )30.832 0;B Bπ = − τ→ ω→ω  corresponds to the quite realistic [36] esti-

mate: 149.8BP = −  MPa for Ar. The dashed bold line of l,s-transition shown only in 

Fig. 1a) has been re-constructed in the present work by the semiempirical Simon’s 

correlation [11] on the base of this BP -value. 

Fig. 3 in which the predicted cZ -dependent (see Eq.(17)) ml-loci are shown for 

the set of very different substances emphasizes the GFA-universality going beyond 

the PCS-frameworks [11, 12]. Its another aim is to demonstrate the indicative value 

just of l-branch ( )l lP Tρ     represented for comparison by the experimental CXC-

data used earlier for its discussion in [9]. In particular, one may see from two variants 

of the Guggenheim’s type [22] projections on the ( ),τ ω - and ( ),π ω -planes, that 

namely the set of l-branches is evidently stratified for such groups as the PCS-similar 

substances Ar and C2H6, from one hand, and the molecular H2O, from the other hand. 

The fundamental meaning of all ml-loci becomes apparent since their about common 

crossover point (shown in Fig. 3a) by the white circle) divides accurately l-branch 
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Fig. 3. The predicted by CVL-diagram ml-boundaries of a supercritical ( )1τ <  , sub-

critical ( )1 t≥ τ ≥ τ  and low-temperature ( )0 t< τ < τ  metastable liquid are compared 

with the experimental CXC-data for Ar, C2H6, H2O. 

3a) The reduced critical vdW-isobar ( )/ 1cP Pπ = =  is the envelop (caustics) of all 

subcritical isobars ( )π 1<  (one of them is schematically represented in Fig. 3a by 

the dashed line). 3b) The reduced critical vdW-isotherm ( )/ 1cT Tτ = =  is the envel-

op (caustics) of all subcritical isotherms (τ < 1) (one of them is schematically repre-

sented in Fig. 3b by the dashed line). Any unstable f-states cannot be revealed in a 
finite-volume closed (N,V)-system by the adequate experiment or simulation (GFA-

conclusion). 
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onto the region of universal criticality and the region of its substance-dependent be-
havior. Thus, it is naturally to use this feature below to specify any simple or com-

plex molecular force-field. The collected in Fig.3b) GFA-estimates of critical expo-

nents for CXC correspond, in total, to the known Griffiths-Wheeler’s classification of 

near-critical isolines [49, 50].  

 

IV. Peculiarities of pseudo-homogeneous criticality in m-regime and crosso-

ver problem. Existence of non-Gibbsian locally-heterogeneous FLUID-phase in su-
percritical m-regime and VAPOR-phase in subcritical m- and g-regimes. 

There were many long-standing and recent interesting efforts [13-15, 24-29, 46-

59] to specify the different structural types of SCF (supercritical fluid)-behavior in 

the extended so-called compressible fluid region. Even this term seems to be rather 

elusive. As a rule, the main goal of such specification is a search for the certain line 

of the thermodynamic supercritical continuation in the (P,T)-plane. It exists suppos-

edly for the unique at subcritical T−
-temperatures vapor-pressure curve ( )vP T . 

There are several well-known “candidates” for this aim related by different authors to 

the famous names of Semenchenko [46] (quasispinodal (qsp) or the line of inflection 

points), Bernal [51] (hypercritical line of the maximum for isobaric heat capacity 

( )P P
C h / T= ∂ ∂ ), Widom [52-54] (generalized near-critical locus of the maxima for 

PC , isothermal compressibility ( )( )1/ /T T
Pχ = ρ ∂ρ ∂  and isobaric expansivity 

( )( )1/ /P P
Tα = − ρ ∂ρ ∂ )), Frenkel [55] (dynamic boundary between the rigid liquid 

and nonrigid liquid). The latter nomenclature resembles formally one introduced by 

Ben-Amotz and Herschbach [13] to separate “hard” fluid from “soft” fluid by Zeno-

line in ( ),τ ω -plane (see Fig. 2b). However, the Frenkel line bears even the more im-

pressive resemblance with the ml-locus introduced in the present work. Indeed, both 

are not related to the actual CP-position. Nevertheless, their slopes in the ( ),τ ω -plane 

are opposite one to another. 

The ml-locus as well as two other basic curves (qsp- and ZL-loci) of CVL-

diagram realize the GFA-concept of a longitudinal crossover connecting two asymp-
totic Boyle’s points (Sec. II) in all EOS-projections. The inhomogeneous cluster-like 

structure of a region constrained by qsp- and ml-loci in Fig. 2 manifests itself only in 

m-regime at ( )cT T+ ≥ -conditions while in g-regime it can be formally considered as 

the Gibbsian phase. However, the same region demonstrates at subcritical ( )cT T− < -

conditions the steady percolation structure of a vapor-liquid non-Gibbsian phase 

composed by voids and clusters in g-regime too. In contrast, majority of the different 

crossover variants discussed in above-cited works can be termed a transversal cross-
over in which the density becomes the main transformation parameter instead of 
temperature. 

As a rule, the foundation adopted in this case for the crossover identification is 

the model-dependent and, hence, non-universal. More accurately, to specify, for ex-

ample, the location of dynamic bound between rigid and nonrigid liquid one adopts 



Фізика аеродисперсних систем. – 2021. – № 59. – С.49-78 

 

 65 

[55] the balance condition for the kinetic energy per particle kinE / N  and its mean 

potential energy potE / N . The latter is determinable only by the nearest cN  parti-

cles-neighbors located withi the certain cutoff radius: cr r≤ : 

( ) ( )3 2 1 2kin c i , j c
i , j

E / N k T / N r r /= ≈ − ≤∑φ .                        (31) 

An attempt to confirm the universality of such finding was performed by two 

antipodal models of f-states: 1) the realistic LJ-fluid with the cutoff radius 2 5cr .= ; 

2) the singular and unrealistic (at least, in a range of “soft” fluid (Fig. 2b) with the 

dominance of attraction) purely repulsive model of ss-fluid. The serious restrictive 

feature of ss-model (studied comprehensively long ago by Hoover and co-authors 

[60]) is an absence of VLE-transition. Supposedly, the similar highly-modelistic ab-

sence of VLE-transition should be also demonstrated by the very “narrow and deep” 

singular attraction of the type that introduced in a combination with hs-model by Yu-

kawa at the description of atomic nuclei [61]. 

From the viewpoint of CVL-diagram, any molecular-based crossover vari-ants 

have to be controllable by the realistic thermodynamic EOS-model ( )ρP ,T  without 

an appeal to the model-dependent, unmeasurable equilibrium chemical potential 

( )µ P,T  and free energy ( )ρf ,T  (Sect. III). In other words, one should prefer to sup-

plement the ( )ρP ,T -description with analysis of a crossover problem in terms of the 

measurable caloric EOS ( )e T,P  for thermal (internal) energy. This function is ex-

pressed in the FT-model, by its non-natural thermodynamic variables because in ac-

cordance with the Gibbs’ formalism: ( ) ( )/ , /
P T

e e s T v P = = − ∂µ ∂ = ∂µ ∂  : 

P P
P P P P

h e v e
C P Pv

T T T T

∂ ∂ ∂ ∂       ≡ = + ≡ + α       ∂ ∂ ∂ ∂       
.                      (32) 

Such substitution of an actual measurable enthalpy ( )h T,P  instead of its entropy-

dependent thermodynamic “counterpart”: ( ) ( )h h s,P e s,v Pv= = +  seems to be high-

ly desirable, especially, in m-regime where the serious problem arises. This is an in-

herent dependence of all thermodynamic fields µ; ,P T  on the arbitrarily chosen ex-

tensive parameter (N or V) in such traditional statistical ensemble [23] as the isobaric 

( ); ,N P T  and/or grand-canonical ( ); ,V Tµ  ones. The study of “incompressible (N,V)-

systems” alongside the fixed isochore: /N Vρ=  becomes, in this context, preferable 

dust in m-regime. 

The FT-model developed earlier [7-9] and used in the present work excludes the 

itself traditional WMG-notion of an isotherm-isobar determined as a line of a phase 

transition with the continuously variable densities. The latter leads not only to the 

formal divergences of compressibility Tχ  and expansivity Pα  everywhere within the 

classical mf-binodal. Indeed, the choice of the standard grand-canonical ( ; ,V Tµ ) or 

isobaric (N; P, T)-ensembles with two fixed coordinate-fields cannot define compre-

hensively [32] the state of two-phase or, generally, heterophase assembly. Both pairs 
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of their conjugated momenta-densities: , sρ σ = ρ  or specific (per mole or per particle) 

quantities: v,s may vary locally within the given limits without changing of the fixed 
fields: ,Tµ  or ,P T  respectively. In other words, the transformation of the measure-

able P,v,T  EOS-surface into that determined exclusively by the fields: , ,P Tµ  

Gibbsian-surface (see, for example [48, 49]) might, in principle, "wash off" the real-

istic heterophase structures of real fluids and their mixtures. 

Thermodynamics assumes a possibility of the Gibbsian (i.e. macroscopic) iso-

thermal differentiation in g-regime applied to the thermodynamic fields of pressure P 

and chemical potential µ. The latter is determined for a pure substance as the specific 

(per particle) Gibbs’ uniform function: ( )ˆ ,G N T P= µ . The methodology of a unified 

EOS postulates that its non-natural variable of the mean (i.e. uniform) number densi-

ty / 1 /N V vρ = =  can be used as independent one. The aim is either to realize the 

known Maxwell’s rule at cT T− <  or to define the “extensive state function of the 

mesophase rigidity” mR , for example, proposed in [48] at cT T+ ≥ : 

( ) ( ) ( )/ /
c c

mT T T T
dP d d d R T +

≥ ≥
ρ = ρ µ ρ = .                        (33) 

This conventional local ρ-parametrization of the Gibbs-Duhem’s differential 

form is based on the implied assumption of a smooth EOS-surface ( ),P Tρ . It be-

comes incorrect one (due to the inconsistent choice of independent variable) if the fi-

nite-volume small ( ),N V -systems are composed by the small number of constituent 

particles within m-regime. In this case, one has to distinct [21] the uniform above-

mentioned chemical potential ˆ /G Nµ =  from its local differential form 

( ) ,
/ T PG Nµ = ∂ ∂ . Such distinction leads to the N-dependent difference, which one 

has to take into account at the simulation of two-phase f-states. The Gibbsian descrip-

tion related to the single (“test”) particle moving in a homogeneous field ( ),T Pµ  

should be modified in this case by the N-dependent equality accordingly to the Hill’s 

concepts [21]: 

( ) ( ),
ˆ ˆ/ / /T PN N N∂µ ∂ = µ − µ ≡ ∆µ .                         (34) 

Such refinement of the standard test-particle methodology proposed by Widom 

[24], is especially important due to the mesoscopic, in fact, (m-) volumes of the most-

ly simulated VLE-diagrams. Hill [21] emphasized long ago that small system effects 
in the regions of phase transition and criticality are especially noticeable. In particu-

lar, an additional independent variable N (discrete by nature) should be introduced in 

the following Clausius-Clapeyron’s system of equalities. It can be considered as the 

formal sign of mesoscopicity in m-regime: 

g l

N g l

s sP s

T v v v

−∂  = ≡ ∂ − 

∆
∆

,                                    (35) 

P T

T P
( a ) ( b )

N N s N N v

∂ ∂   = = −   ∂ ∂   

∆µ ∆µ
∆ ∆

,                (36) 
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where the left-hand sides and the difference ( ) /l g g lv∆ = ρ − ρ ρ ρ  are measurable by 

experiment or by numerical simulation. Hence, the unmeasurable entropy-dependent 

differences ∆µ  and s∆  may be appropriately estimated namely by Eqs.(34-36). The 

implied differential equality between two uniform chemical potentials ˆ ˆg ld dµ = µ  

taken alongside of the single ( )vP T -curve was adopted in the field space to derive 

Eqs.(35, 36). 

The authors of the dynamic crossover [55] have used the semiempirical interpo-

lation function (we changed in its relaxation times the denotations of the respective 

densities) for the thermal energy ( )1
,e T v −= ρ : 

3

03
E

e kT
N

  ρ
 ≡ = −  ρ   

.                                       (37) 

Let us remind that the gibbsian internal energy is a function ( )e v,s . The following 

contribution of compressibility at the description of a simulated potential energy by 

Eq.(31) has been also accepted for LJ-fluid [59]: 

( ) ( ) ( )0 0 0pot LJ LJE E V E V P V V= − + − ,                       (38) 

where 0V  corresponds to the volume of minimal possible (negative) pressure 0P  at 

zero temperature. The advantages of CVL-diagram becomes also obvious in the con-

text of such natural choice for the zero-level of potential energy. Indeed, at any given 

number of simulated LJ-particles N with a dominance of attraction both above pa-

rameters ( )0 0V ,P  correspond exactly to the B-parameters predicted in Sect. III. Three 

basic loci of CVL-diagram with the negative slopes coincide just at this B-point. Be-

sides, the local definition of the calculated potential energy by Eq.(31) used in [55]is 

a uniform by nature. Hence, it leads sooner to the concept of Zeno-line (with its com-

pensation of attractive and repulsive contributions) than to the presumable compensa-

tion of kinetic and potential contributions. The latter was postulated to determine the 

location of Frenkel’s line with its positive slope in the ( ),τ ω -plane. 

 

Crossover problem in CVL-diagram. One may note that the accepted in the de-

scribed procedure definition of the kinetic energy by Eq.(31) is exclusively the T-

dependent and ig-one. It is also adopted by any simulation methodology [62-64] at 

the imitation of an actual fixed temperature. However, the concomitant selection [55] 

of the “best” critical LJ-parameters recommended in [10, 20] 1 31*
cT .= , 

* 0.314cρ =  

becomes inconsistent with both GFA-estimates for Ar reported, for example, in [6]: 

1 412*
cT .= ; ( )* 0.1905c cAρ = ; ( ) ( )* * * * 0.0785c g c cP T A ρ →ρ =   and 

* 1.412cT = ; 

( )* 0 0.1592c cAρ = ; ( ) ( )* * * * 0 0.0656c l c cP T A ρ →ρ =  . Two variants of LJ-reduced criti-

cal density manifest the meso-fluctuations. This significant distinction and the pre-

scribed critical “jump” of the reduced mechanical variables (Sect. II) are easily ex-

plainable. The aim of the present work is the usage of the universal realistic short-
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range FT/LJ-potential in simulations performed for any substance with the explicit 
CVL-diagram. Oppositely, the above “best” CP-values together with the strongly 

overestimated semiempirical LJ-estimates [10, 20]: 0 126*
cP .= , 0 3063cZ .=  de-

scribe, at best, the LJ-fluid itself. One obtains the shifted values of parameters for the 

real Ar with its experimental CXC- [17] and CP-location: 150 66cT .=  K; 0.531cρ =  

kg/cm
3
; 4860cP =  kPa; 0.2919cZ =  [18]. GFA-estimates of the effective molecular 

parameters for g-phase of Ar: ε 106 7/ k .=  K; ( ), 0.2877g c cA Pσ =   nm become es-

sentially less than the conventional [23] ones: ε 119 8/ k .=  K and σ 0 3405.=  ob-

tained from the theoretical second virial coefficient ( )B T  [65]. We state now that the 

latters are systematically overestimated for any other fluids too. 

To support this important conclusion the comparison of the short-range FT/LJ-

potential [6] with the different ,ε σ -estimates is natural. Let us consider those follow-

ing from the conventional crossover variants based on the methodology of RG-

theory. The relevant Il/mf-crossover transformation is now widely discussable [25-

29] on the base of RG-theory of non-classical criticality. Nevertheless, the presence 
of vdW-loop at the predicted CP-temperature cT  was noticed long ago by Wil- 

son and Fisher. Then this mean-field feature was artificially suppressed by White and 

Zhang [27] at the development of global RG-expansion (GRG) for fluids. Recently 

the GRG-methodology with some improvements and modifications has been applied 

to the n-alkanes. The approach was used, firstly, for the rough prediction of VLE-

diagram in the relatively simple hydrocarbons CH4, C2H6, C5H12, C7H16 [28]. The ap-

proach was then used to improve such VLE-predictions in CH4, C2H6, C2F3Cl3, SF6 

[29]. The results of comparison with FT/LJ-predictions are represented in Table 2. 

In particular, White has demonstrated [45] the following “spectrum of possibilities” 

for Ar in comparison with the conventional but strongly overestimated values based 

on the second virial coefficient ( )B T -estimates [65]: σ 0 3405.=  nm, ε 119 8/ k .=  

K. One variant leads to the set of similar values σ 0 3508.=  nm, ε 117 6/ k .=  K. They 

were obtained, however, by the artificially combined sw/LJ-potential with the addi-

tional hs-diameter: 1σ 0 3227.=  nm and the following widthes of sw-well: [0.3938 

nm, 0.3227 nm]. White predicted [45] CP- location reasonably, using then the much 

more wide but, simultaneously, less deep sw-potential for Ar: 1σ 0 3227.=  nm; 

1σ λ σ 0 5647sw .= =  nm: ε 97 1/ k .=  K. The similar trends for sw-potential: (0.3162 

nm; 0.585 nm; ε 69 4/ k .=  K) and (0.3067 nm; 0.5214 nm; ε 93 3/ k .=  K) were re-

vealed by the striking disagreement with the recommended ( )B T -estimates [65]. We 

have reported in Table 2 for comparison with GFA-estimates following from 

Eqs.(8,9) the other GRG-parameters adjusted in [45, 27-29] to the given set of CP-

parameters ( , , ;c c c cT P Zρ ). 

One may conclude from the analysis of Table 2 (we do not comment it in detail) 

that GRG-methodology [27-29, 45] is the rather inaccurate and formidable approach 

to the problem of a fluid, in total, and to the problem of f-criticality, in particular. The 

very restrictive initial choice of a singular hs-model as well as the further usage of an 
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also singular sw-model to accumulate the attraction contribution are not completely 

adequate for real fluids. They need the additional thermodynamic control of GRG-
trajectory to become the reliable predictive “tool” of criticality itself and of its exten-

sion by the crossover approach. 

Sengers and co-authors [25] have introduced the RG-based adjustable third 

( )t cc Z -coefficient in the original vdW-methodology to compare the crossover 

Il/vdW-predictions of criticality in O2, Ar, CH4, C2H6, H2O. For purposes of com- 

parison with a near-critical experiment, the reduced “shifts” between the actual {

, , ;c c c cT P Zρ }- and the “imaginable” {
0 0 0 0, , ; 3 / 8c c c cT P Zρ = }-sets of CP-para-meters 

were expressed [25] in terms of ( )t cc Z -coefficient: 

Table 2. Comparison of the effective sw-potential parameters ( , ,ε σ λ ) used in the differ-

ent GRG-variants [27-29, 45] with those ( /cr σ  is here unspecified) predicted for the 

short-range FT/LJ-potential (m – number of HC-segments in [28,29]). 

Fluid Method m σ, nm swλ
 ε / k ,K cZ  *

cT  
*
cP  

*

cρ  

Ar 

GRG[45] 1 0.3230 1.75 97.1 0.291 1.552 0.1219 0.2698 

FT/LJ 1 0.2877 /cr σ
 106.7 0.292 1.412 0.0785 0.1905 

LJ [20] 1 0.3405 3.0 119.8 0.306 1.310 0.1260 0.3140 

CH4 

GRG[45] 1 0.3550 1.70 138.0 0.288 1.381 0.1075 0.2704 

GRG[28] 1 0.3670 1.44 168.8 0.293 1.129 0.1024 0.3093 

GRG[29] 1 0.3590 1.54 147.9 0.293 1.131 0.1036 0.3130 

exp.[66]     0.291 1.129* 0.0975* 0.2969* 

FT/LJ 1 0.3160 /cr σ
 135.4 0.290 1.407 0.0774 0.1901 

C2H6 

GRG[45] 1 0.4050 1.63 264.0 0.285 1.157 0.0907 0.2750 

GRG[28] 4/3 0.3778 1.45 241.8 0.291 1.263 0.0874 0.2382 

GRG[29] 4/3 0.3670 1.60 188.4 0.288 1.262 0.0877 0.2414 

exp.[66]     0.282 1.263* 0.0793* 0.2226* 

FT/LJ 1 0.3609 /cr σ
 220.1 0.279 1.388 0.0754 0.1946 

C5H12 

GRG[45] 1 0.5210 1.49 598.0 0.263 0.786 0.0563 0.2723 

GRG[28] 7/3 0.3931 1.51 265.0 0.302 1.773 0.0676 0.1263 

GRG[29] 7/3    0.301 1.773 0.0678 0.1271 

exp.[66]     0.269 1.773* 0.0560* 0.1176* 

FT/LJ 1 0.4694 /cr σ
 343.1 0.270 1.369 0.0735 0.1992 

C7H16 

GRG[28] 3 0.3933 1.56 251.3 0.280 2.150 0.0549 0.0912 

GRG[28] 3 0.3933 1.56 251.3 0.280 2.150 0.0552 0.0918 

exp.[66]     0.282 2.150* 0.0480* 0.0793* 

FT/LJ 1 0.5229 /cr σ
 400.0 0.260 1.350 0.0708 0.2022 

*) – the erroneous reduction of experimental CP-parameters taken from [66] arisen due to 

the inadequate choice of ( ),ε σ -parameters in [29]. 
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2

0 0 0 0

11
1 ( ) 1 ( ) 1 ( )

10 54 135 540

c t c t c c t t

c c c c

T c c P Z c c
a b c

T P Z

 ρ
≈ − ≈ + ≈ − − ρ  

.     (39) 

To obtain these approximate estimates, it was supposed that: 

1) far away from CP the real CXC-diameter: ( ) ( ) / 2d g lTρ = ρ + ρ  of the crosso-

ver vdW-EOS with three ( ta,b, c )-coefficients should coincide with the mf-

diameter of vdW-EOS specified by only two (a,b)-coefficients; 

2) the real CP-position belongs to the mf-vapor-pressure ( )0

vP T -locus in the 

(P,T)-plane (i.e. ( )0

c v cP P T= ). 

In spite of the above-mentioned absence of mf-CP itself in the CVL-diagram, it 

was the informative test for GFA-principle (see its Table 1) to compare the exact FT-

correlations [6, 8, 9] with those following from Eq.(39): 

( )
( )

( )
( )

2

30 0

27 2 3 2
( ) ( )

2 132 1

c c cc c

c c cc

A A AT
a b

T AA

− −ρ
= =

ρ −−
,             (40) 

( )
( )

( )2

30 0 2

27 2 16 1
( ) ( )

34 1

c cc c

c c cc

A AP Z
a b

P Z AA

− −
= =

−
.              (41) 

The supposed by GFA-principle jump-like trend of asymptotic critical slopes: 

cA  and 0 4cA =  corresponds to Eqs.(40,41). For the latter value 0

cA  one obtains the 

coincidence of actual CP and vdW-CP (Sect. IV). At the same time the distinction of 

such vdW-CP from the actually mf-one defined by the Andrews-van der Waals’ CP-
conditions of Eq.(21) is crucial for CVL-diagram. Indeed, it never uses the respective 
mf-definition for an actual CP (implied, however, by all discussed here [25, 27-29] 

and by many other GRG-variants). Hence the above coincidence is a realistic asym-

metric feature of the exclusively actual CP revealed by GFA-principle. Thus the di-

mensional CP-parameters { , , ;c c c cT P Zρ } are common for both asymptotic f-branches 

of CXC excluding only the values of cA - and 0

cA -slopes. Such “bifurcation” of critical 

slopes defines the principal distinction between a fictitious mf-CP from Eq.(21) and 

the non-classical interpretation of vdW-CP introduced by GFA-principle. 

We do not comment again the reported predictive capability of RG-based cross-

over Il/mf-model from [25]. The reason is its obviously unrealistic (see also our re-

cent work [6]) estimates obtained for above “shifts” by Eq.(39). It seems more inter-

esting to emphasize that the systematic underestimation of cZ -value by Eq.(41b) is 

related to its non-linear GFA-correlation with the input cA -parameter. This observa-

tion is in contradiction to the usual PCS-assumption [11, 12] about the supposedly 

linear interrelation between cZ  and Riedel’s factor: cA Ri≡ . Another interesting ob-

servation is the striking difference between an about isochoric 0
c cρ ≈ ρ  RG-crossover 

trajectory and the essential “shift” (increase) of the critical density predicted by the 

GFA-Eq.(40b). The former effect is the obvious consequence of two above-

mentioned assumptions about the shape of a real fluid VLE-diagram accepted in [25]. 

Unfortunately, even the rather sophisticated usage of RG-theory in its alternative 
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GRG-variants shares the first questionable assumption leading to the artificial global 

“symmetrization” of both CXC-branches. In other words, one obtains (see Figs. rep-

resented in [28, 29]) the certain “graphic superposition” of the classical binodal with 

its mf-CP top and exponent 
0 1 / 2β =  (predicted by the known unified SAFT-EOS, for 

example), from one hand, and the non-classical CXC-variant with its respective fluc-

tuation flattening due to RG-exponent 0.326β≃  from another. Such “superposition” 

is considered, from our viewpoint, without the correct account for the GFA-nature of 
real fluids. The CVL-diagram eliminates this restriction of RG-theory by the simulta-

neous account for both effects (see also [26]). The notions of mf-CP and classical 

binodal/spinodal construction never appear in  the GFA-methodology. The close lo-

cation of above lines in the (P,T)-plane well-established by many authors, poses the 

fundamental supercritical fluids SCF-problem. Could one recognize in this region the 

common underlying molecular-level peculiarities of f-states in the thermodynamic 

second derivatives and transport coefficients, which lead to their recognizable by ex-
periment or simulation extrema? If the answer is here positive, one can divide the 

SCF-region onto the subregions of SCF-strata with the certain persistent type of a 

molecular-based structure, at least, in m-regime of criticality. 

Table 3. Comparison of RG-based Ib/mf-crossover transformation [25] with that follow-

ing from GFA-principle [5, 9]. 

RG-crossover vdW-fluid [25] Fluid 

Input Prediction Experiment 

tc  ( )RG
c tZ c  0

c

c

T

T
 

Eq.(39) 

0

c

c

ρ
ρ

 

Eq.(39) 

0

c

c

P

P
 

Eq.(39) 

Substan

ce 
cZ  

[12] 

0.0 0.375 1 1 1 Ar 0.291 

0.2 0.349 0.977 1.004 0.900 O2 0.292 

0.5 0.309 0.943 1.009 0.786 CH4 0.290 

1.0 0.255 0.892 1.019 0.624 C2H6 0.279 

1.5 0.217 0.853 1.028 0.513 H2O 0.229 
 

GFA-crossover of real fluids [5,9] 

Input Prediction 

Substan

ce. 
cZ  

[12] 
cA  

[12] 

( )c cZ A  

Eq.(41b) 

δ cZ  

% 

0
c

c

T

T
 

Eq.(

40a) 

0

c

c

ρ
ρ

 

Eq.(40b) 

0

c

c

P

P
 

Eq.(41a) 

Ar 0.291 5.76 0.287 -1.05 0.976 1.185 0.885 

O2 0.292 5.92 0.281 -3.85 0.973 1.195 0.871 

CH4 0.290 5.90 0.282 -2.92 0.974 1.194 0/873 

C2H6 0.279 6.40 0.264 -5.50 0.966 1.222 0.830 

H2O 0.229 7.86 0.222 -3.02 0.946 1.281 0.718 
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At the construction of CVL-diagram in g-regime (Fig. 2) we have supposed 

that the rejection from a unified EOS and from its unavoidably mf-CP ( 
0 0 0 0, , ;c c c cT P Zρ ) 

defined by Eqs.(21a,b) is the necessary step. The FT-model let us to separate by qsp-

locus and by the concomitant ml-locus the global f-strata at any temperature. They 

were termed by use of capital letters GAS, FLUID, STABLE AND METASTABLE 

LIQUID to emphasize the distinction from the traditional location of g,f,l-states in the 

restricted region of VLE-diagram. The latter is completely based on the 

binodal/spinodal’s mf-concept rejected by FT-EOS (1). GFA-principle admits [5, 9] 

the f-dependent discontinuity in its well-definable [37-43] T-dependent FT-

coefficients determined alongside the entire qsp-locus. 

The underlying discontinuity in the effective molecular diameters of collisions 

fσ  following from Eqs.(3) and (9a,b) makes the other common for both f-phase ef-

fective parameter of well-depth g,lε  in Eq.(8) to be of importance at the universal 

molecular interpretation of the thermodynamic fluctuations in m-regime. It seems 

naturally to suppose [5, 42, 43] that the only third effective parameter of well-width 

cr  should be also necessary common for f-phase and enough to interpret any 

mesoscopic thermodynamic phenomena. One of the main aims of such finite-range 
three-parameter FT/LJ-potential ( )/ ; , ,f

FT LJ f cr rφ ε σ  is namely the simulation in SCF-

states. The goal is the more precise determination of the qsp-location shown in Fig. 2.  

These notes actuate the introduction of a normalized PCS-fluctuation variable of 

the type that introduced by Eq.(11) in LSB-EOS (10) [1]: 

( ) ( )2
*

*

1

1c

c c

c

N T
Z Z

N Tτ>

∆ ∆ ⋅ −∂ω ⋅∆ ≡ = τ = ∂π 
.                              (42) 

The last equality based on Eq.(8) is essential to recognize its generalized form. It 

is accepted [43] to specify the reference infinite-range LJ-potential 

( ); , ,LJ f cr rφ σ ε → ∞  at the unit reduced temperature * * 1cT T= τ ⋅ = . It was shown ear-

lier by FT-model that the average LJ-virial [ ]w  determined per a translation degree of 

freedom leads to the physically-meaningful description of any f-states in g-regime: 

[ ] [ ]
1

3
LJ

W w
Z

N kT kT
− = = .                                         (43) 

This FT-correlation established between the negative average derivative of a po-

tential energy (i.e. force field of the aforementioned attraction) multiplied by the av-

erage local interparticle distance, from one hand, and the average kinetic energy, 

from another, can be related to a single CP-states itself. To our mind, the given cou-

pled FT-correlation of [ ]w / kT -terms and its thermodynamic manifestation by the 

fluctuation coefficient ( )fc T  from Eq.(2) is somewhat more fundamental notion in 

comparison with the conventional analysis of LJ-model in terms of potential and ki-

netic energies. The latter is, of course, restricted by the adopted ig-model of a simu-

lated temperature ( 2

0 3k T m u /= ) ( )2

0
3k T m u /=  performed in accordance 
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with Eq.(32) at the pseudo-ig-constraints of Zeno-line ( [ ]1 0LJZ , w= = ) due to the 

standard equipartition theorem [21-23]. We have returned to the original vdW-EOS 

(4) reduced now by its mf-CP-parameters to illustrate the other interesting conse-

quences of GFA-principle by Fig. 4. The obvious advantage of the rejection from the 

mf-constraint introduced by the Andrews-van der Waals’ definition in Eq.(21) is a di-

rect possibility to compare the fluctuation contours of vdW-fluid and real fluid Ar: 

( )
( )

2

2

6 3

24 3

c

c

Z

Z
∆

⋅ ∆ − ω
τ =

⋅ ∆ − − ω
.                                      (44) 

For this aim we have calculated and represented by continuous line the same 

fixed ∆-values 2.5∆ =  discussed earlier by Nishikawa and co-authors [56] at the mf-
constraint 0 3 / 8cZ = . The added dashed lines correspond to the choice 0.2919cZ =  

for Ar. The qsp-locus termed the fluctuation ridge by above authors remains invaria-

ble in all projections of Fig. 4. 

 

Conclusion. The predictive superiority of FT-model has been demonstrated by 

this review in the step-by step manner. The detailed explanation of the mesoscopic 

fluctuation concepts is represented. The numerical results corroborate the approach of 

FT-model globally without the restrictions of non-classical criticality or the specially 

mean-field low-temperature behavior predicted by any unified EOS-type. 
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Fig. 4. The forced elimination of the crossover range (see Fig. 2) between the actu-

al CP and the fictitious mf-CP by their artificial matching for Ar and vdW-fluids 

leads, as a rule, to the popular speculations [46-59] about the supercri-tical third-
order (g,l)-transition. 
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Роганков
 
В.Б., Швець М.В., Роганков О.В. 

Мезоскопічна метастабільна рідина в конгруентній пара-рідинній діаграмі 

аргону (огляд ФТ-моделі) 

 

АНОТАЦІЯ 
Традиційне об’єднання понять класичної метастбільності і некласичної скейлінгової 

критичної області в рамках єдиного рівняння стану з середньо-польовою, т. зв. Ендрю 
- ван-дер-Ваальсівською, критичною точкою повинне бути піддане додатковому аналі-
зу. Його метою є встановлення реалістичної розшарованої структури мезоскопічної 
рідкої фази. Вона, імовірно, існує в широкому інтервалі температур, локалізованих 
між майже нульовою і бойлівською точками Р,Т-діаграми. Запропоновано альтерна-
тивне прийня-тому обґрунтування наявності безперервних кросоверних границь діаг-
рами. Вони розділяють окремі структурні підобласті. Район гетерогенної рідкої фази, 
який покриває глобально весь такий інтервал, доречно назвати не-гіббсівською фазою. 
Це пояснюється її дискретною гетерогенно-інтерфазною структурою і не вимагає 
посилань на явище спінодального розпаду. Відповідна область метастабільного роз-
шарування утворена трьома підобластями: 1)  надкритичною; 2) підкритичною і 3) 
сублімаційної конденсованої фази для формально нестисливої рідини. Остання визна-
чена одночасною фіксацією двох екстенсивних масштабів об’єму і числа частинок. Її 
розташування на конгруентній пара-рідинній діаграмі обмежене введеною новою гра-
ницею флуктуаційної метастабільності, а також відомою Зено-лінією. Таким чином, 
всі підобласті включають область м’якого флюїду з переважанням міжчастинкового 
притягання. Решта конгруентної діаграми відповідає газовій і твердій підобластям 
(кристалічної або аморфної фаз) в твердому флюїді по класифікації, запропонованій 
Бен Амоцем і Хершбахом. 

Ключові слова: мезоскопічна рідина, гетерогенна інтерфаза, границі метастабіль-
ності. 

 

 


