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Classic origin of mesoscopic critical and boyle’s singularities simulated by 

fluctuational potential 

 
We have used the developed recently methodology of the congruent vapor-liquid (CVL) di-

agram for prediction, in particular, of the entire vapor-liquid equilibrium (VLE) diagram in 

the test-fluid argon. The former is based on the proposed earlier principle of the global fluid 

asymmetry (GFA) which rejects the conventional concept of a unified fluid equation of state 

(EOS) in both sub- and supercritical regions. In contrast to the traditional VLE-locus appli-

cable in the restricted (subcritical) range between critical ( cT ) and triple ( tT ) temperatures, 

the CVL-locus spans the much more wide ranges of fluid states located between the general-

ized Boyle’s (B) points ( 0, FT

BTρ→ ], ( 0, FT

BT → ρ ] predicted by FT-model of fluctuational 

thermodynamics. The new shape, location and the opposite sign of curvature for the boundary 

of metastable liquid which does not pass over CP (critical point) have been revealed in the 

global fluid (f) temperature range ( 0, FT

BT ) including its supercritical segment. The classical 

GFA-origin of the asymptotic criticality is unambiguously established without any appeals to 

the non-classical scaling phenomenology but in accordance with its main findings, at least, in 

the regions of stable and metastable liquid. Since the fundamental concept of a homogeneous 

equilibrium Gibbsian phase achieves the limit of its applicability in the simulated discrete 

N,V-systems of the Lennard-Jones’ particles, their metastable, at best, states are highly-

probable in the conventional scales of VLE-simulation. 

Keywords: congruent vapor-liquid diagram, boundary of metastable liquid, global fluid 

asymmetry. 
 

 

1. Introduction. There is a set of objective difficulties in the various experi-

mental and/or simulation methodologies usable for determination of an actual (i.e. 

non-mean-field (mf)) critical point’s (CP-) position. At least two parameters from its 

EOS-thermodynamic set: { c cT ,P  (critical fields [1]) and , /c c c c cZ P k Tρ = ρ  (critical 

densities or volumes: 1 /c cv = ρ )} are hardly measurable by the direct experiment 

with an uncertainty better than one percent. The standard extrapolation of the coexist-

ence-curve (CXC) data simulated far away from CP by a combination of the asymp-

totic scaling law and the so-called mf-rectilinear diameter is the rather arbitrary pro-

cedure. Its uncertainty becomes especially undesirable within the small asymptotic 

CP-vicinity: 1 cT / T∆τ = − ≲
310−

. The discrepancies between the recommended by 

different authors cρ -values can lead, in principle, to the significant uncertainties at 

the estimation of standard substance-dependent amplitudes B, Г, D and the respective 

universal EOS-exponents: β, γ, δ [1, 2]. The isochoric heat capacity vC -parameters 

A, α become especially elusive in this case. The common feature of the power-law 

definitions is an attempt to elucidate the asymptotic behavior of the strongly- or 
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weakly-fluctuating [1] local densities (ρ, v, s – specific entropy) at the given subcriti-

cal ( )T ,P− − - and/or supercritical ( )T ,P+ + -equilibrium state-points. One usually 

determines the non-classical CP-trends in terms of the smooth functions defined 

alongside either CXC or the CP-isolines: ( ),g c vT T P T− − ρ →  , ( ),l c vT T P T− − ρ →  , 

( )/ ;
c c

P P T+ −ρ → , ( );
T c c

T T+χ → ρ . The square branches denote here and below the 

implied functional dependences along CXC. 

Strictly speaking, only the most problematic for an experiment CP-exponent δ 

implements an important inverse task in which the pressure /P+ −  (i.e. the thermo- 

dynamic field [1]) is considered as the function of independent density ρ given along-

side the fixed a priori cT -value. At a glance, just this choice should be appropriate to 

test the asymptotic scaling law ( )/ ;
c c

P T+ −ρ → ρ  with two above-mentioned parame-

ters (D, δ) not only by the direct experiment but also by the most usable NVT-

ensemble of MD (molecular-dynamical) simulations [3]. Obviously that both exten-

sive but, at best, mesoscopic (Sect. II) parameters 3N ,V L=  of a simulated box 

should be simultaneously fixed to study the realistic fluctuation dynamics of any 

equilibration in the CP-vicinity. However, there are some paradigms of the conven-

tional non-classical criticality, which forbid to realize namely such plan. 

One admits that all real fluids (f) (Ar, CO2, H2O,…) belong to the special class 

of universal criticality [1,2] which is determinable by the Ising-based Ib-systems. Its 

distinctive features follow from the adopted so basic Ib-model of a lattice gas: 

(i) the imposed primitive thermodynamic Ib-symmetry between the respective liq-

uid (l) and gas (g) CXC-densities at cT T− ≤  with constant (vertical) T-in-

dependent “diameter”: ( ) ( ) / 2d g lT T− − ρ = ρ + ρ  ; 

(ii) the underlying “particle-hole” lattice-gas’-symmetry symbolized by the ± signs 

standing before both CXC-branches: ,l g l gB B= − β = β  (it is usually postulat-

ed also for the other subcritical EOS-exponents: l gγ γ= ; l gδ δ= ); 

(iii) the absence of an inherent for real fluids isothermal latent heat of (g,l)-

transition: ( ) ( ) ( )g lh T T s T s T− − − − = −  
 in the ordinary lattice-gas; 

(iv) the implied external zero-field and the respective zero-value of its T-derivative 

(density) lead to the degeneracy of the thermodynamic Clausius-Clapey-ron’s 

differential equality. 

The remarks (i-iv) confirm the rather restrictive nature of the adopted basic Ib-

model at the description of CP-vicinity in real f-states. On the other hand, the as-

sumed by the original van der Waals’ vdW-EOS concept of an isothermal (g,l)-

continuity in both ( /T+ − ) f-regions leads unavoidably to the known vdW-loop with 

its conventional but rather controversial interpretation of the binodal-spinodal con-

struction. We mean here the physically questionable for a finite-volume (N,V)-system 

of interacting particles predictions of the equilibrium unstable states ( 0Tχ < ), the 
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negative pressures ( 0P < ) of spinodal decomposition (?) and the supposedly errone-

ous critical mf-parameters ( )0 0 0 0, , , 3 / 8c c c cT P Zρ =  for the so-called Andrews-van der 

Waals’ CP [2,4]: 

( ) ( )2 2/ 0 ( ) / 0 ( )
c c

T T
P a P b∂ ∂ρ = ∂ ∂ρ = .                      (1) 

The first condition of the type Eq.(1a) defines also the mf-spinodal at cT T
− <  . 

Simultaneously, it should be fulfilled along any two-phase isotherm-isobar ( )T ,P− − . 

Some authors have exploited recently the similar vdW-formalism of (g,l)-

continuity combined either with the oversimplified particle-hole model [5] or with the 

non-equilibrium gradient-type’s [4,6] models of non-homogeneity. The common aim 

was to reveal the presumed existence of the higher (third)-order (g,l)-transition in the 

supercritical T + -region of f-states. In one case [5] a combination of the precise tabu-

lar EOS-data for Ar, CO2, H2O with the modelistic percolation transition has led to 

the “disappearance” of a single mf-CP itself determined by Eq.(1). More accurately, it 

becomes the horizontal critical ( )c cT ,P  isotherm-isobar-line. Such construction re-

sembles, of course, the coincidence of isotherms with isobars in a first-order transi-

tion. Their presumable critical “counterpart” termed rigidity [5] is limited, however, 

by two “spinodal” point-densities of the reversible percolation ( g l→ )- and ( l g→ )-

transitions. In other case [6], a combination of the thermodynamic four-dimensional 

phase space formed by coordinates (fields) and momenta (densities) ( ), ; ,P T sρ σ =ρ  

with the non-equilibrium gradient terms (defined only for densities of the number 

particles: /N Vρ =  and entropy /S Vσ = ) was used. Such approach has provided a 

possibility to discuss the dynamical (i.e. t-dependent) PVT-behavior (?) of the vdW-

fluid’s criticality in terms of its extended chemical potential: 
2 2

, ; , ,T P µ ρ σ ∇ρ ∇σ 
. 

Besides, the proposed in [6] methodology introduces on the ad hoc basis the continu-

ous dependence for both vdW-coefficients (a,b) defined along an isotherm-isobar 

too: ( )b T ,P , ( )a T ,P . Only T-dependent coefficients are admissible (Sect. II,III) in 

the framework of any cubic EOS. 

The FT-(fluctuational thermodynamics’) model developed earlier [7-12] and 

used in the present work excludes the itself traditional notion of an isotherm-isobar 

determined as a line with the continuously variable densities. The latter leads not only 

to the formal divergences of compressibility Tχ  and expansivity Pα  everywhe-re 

within mf-binodal. Indeed, the choice of the standard grand-canonical (V ;T ,µ ) and 

isobaric (N;P,T)-ensembles with two fixed coordinates-fields cannot define compre-

hensively [4] the state of two-phase or, generally, heterophase assembly. Both pairs 

of their conjugated momenta-densities: , sρ σ = ρ  or specific (per mole or per particle) 

quantities: v,s may vary locally within the given limits without changing of the fixed 

fields: ,Tµ  or P,T  respectively. In other words, the trans-formation of the measure-

able P,v,T  EOS-surface into that determined exclusively by the fields: P, ,Tµ  

Gibbsian-surface [1] might, in principle, "wash off" the realistic heterophase struc-
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tures of real fluids and their mixtures. 

 

2. Fluctuational – thermodynamic nature of mesoscopic simulations. Ther-

modynamics assumes a possibility of the Gibbsian (i.e. macroscopic) isothermal dif-

ferentiation applied to the thermodynamic fields of pressure P and chemical potential 

µ. The latter is determined for a pure substance as the specific (per particle) Gibbs’ 

function: ( ),G N T P= µ . The methodology of unified EOS adopts that its incon-

sistent variable of the mean (i.e. uniform) number density / 1 /N V vρ = =  can be 

used as independent one either to realize the Maxwell’s rule at cT T− <  or to define 

the “fundamental extensive  state function” of “rigidity” [5] at cT T+ ≥ : 

( ) ( ) ( )/ /
c cT T T T

dP d d d w T +
≥ ≥ρ = ρ µ ρ = .                                  (2) 

This local ρ-parametrization of the Gibbs-Duhem’s differential form is based on 

the implied assumption of a smooth EOS-surface ( ),P Tρ . It becomes not completely 

correct (due to the inconsistent choice of independent variable) if the finite-volume 

small N-systems (termed in [10-12] the mesoscopic N,V-systems) composed by the 

small number of constituent particles should be considered. In this case, one has to 

distinct [30] the uniform above-mentioned chemical potential ˆ /G Nµ =  from its dif-

ferential form ( )
,

/
T P

G Nµ = ∂ ∂ . Such distinction leads to the N-dependent difference, 

which one has to take into account at the simulation of two-phase f-states. The 

Gibbsian related to one particle model of a smooth field ( ),T Pµ  implied, in particu-

lar, by Eq.(2) as well as by the conventional methodology of VLE-simulations [13] 

should be modified in this case by N-dependent equality: 

( ) ( ),
ˆ ˆ/ / /

T P
N N N∂µ ∂ = µ − µ ≡ ∆µ .                                 (3) 

This refinement of the standard test-particle methodology proposed by Widom 

[31] is especially important due to the practically mesoscopic (m-) volumes of the 

mostly simulated VLE-diagram. Hill [30] emphasized that small system effects in the 

regions of phase transition and criticality are especially noticeable. In particular, an 

additional independent variable N (discrete by nature) appears in the generalized 

Clausius-Clapeyron’s system of equalities [30]. It can be termed as the formal sign of 

mesoscopicity: 

g l

g lN

s sP s

T v v v

−∂ ∆  = ≡ ∂ − ∆ 
,                                          (4) 

( ) ( )
P T

T P
a b

N N s N N v

∂ ∆µ ∂ ∆µ   = = −   ∂ ∆ ∂ ∆   
,          (5) 

where the left-hand sides and the difference ( ) /l g g lv∆ = ρ −ρ ρ ρ  are measurable by 

experiment or by numerical simulation. Hence, the unmeasurable entropy-dependent 

differences ∆µ  and s∆  may be appropriately estimated only by Eqs.(3-5) with  the 

implied differential equality between two uniform chemical potentials ˆ ˆg ld dµ = µ  
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taken alongside the unique CXC in the field space. 

It was argued earlier [7-9] that the necessary thermodynamic choice of an ex-

tensive V-scale for f-state leads in the thermodynamic limit: ( )lim /
V

N V
→∞

ρ =  to the 

special role of its conjugated variable P-pressure. The respective thermodynamic FT-

Hamiltonian determined in the four-dimensional phase space is degenerated on the 

thermodynamic Gibbs’ surface: ( ) 0H P,T ;v,s = . The role of a new FT-Hamilto-

nian passes, as a result, just to ( )P v,T -EOS with the exclusive role of a constant spe-

cific entropy s (as the path of “FT-motion”). We refer now the interested readers to 

the development of an alternative geometric concept by Maslov [16,17] in which just 

the alternative role of the Gibbs’-function ( ),G N P T= µ  was discussed. This main 

“tool” of classical WMG-phenomenology [9] originated to construct the actual VLE-

diagram on the base of a unified (i.e. common for both coexisting f-phases) EOS is 

highly modelistic by nature for a real mesoscopic finite-volume (N,V)-system. One 

cannot realize the verification of the supposed equality ( ) ( ), ,g lT P T P− − − −µ = µ  by 

the direct VLE-experiment. Moreover, its plausible two-phase imitation in the widely 

usable numerical GEMC (Gibbs ensemble Monte Carlo) simulation [13] requires, to 

our mind, the serious oversimplifications. It arises just due to the implied isothermal 

( ),f f Tµ ρ -dependencies. GFA-principle omits the described “µ-problem” at the 

construction of CVL-diagram. 

In the present work we intend to argue that some postulates of the classical 

WMG-phenomenology [9] should be rejected, at the study of realistic finite-volume 

(N,V)-systems. In their mesoscopic volumes (simulated at the given nano-scales of 

length and volume 
3V L= ) the main vdW-hypothesis of (g,l)-continuity and reversi-

bility of its two variants ( g l→ ) and ( l g→ ) achieves the limit of its applicability. 

Hence, the impact of a discrete variable (number of particles N) cannot be negligible 

at any estimation of the two-phase thermodynamic field ( ), ;T P µ variables. Moreo-

ver, the different physical nature of mechanical ( /N Vρ = -density, P-pressure (mo-

mentum flux), kin potH E E= +  – Hamiltonian (total mechanical energy of a con-

servative force-field) variables and thermal (T – temperature, µ – chemical potential 

per particle, e E / N=  – internal energy per particle, s S / N=  – entropy per parti-

cle) variables has to be taken into account by the appropriate simulation f-models. As 

a result, the unavoidable distinctions in the local discrete structures of g- and l-states 

might be presumably described in terms either the different interparticle effective po-

tentials ( )f rφ  accepted separately for every f-phase or by the distinguishable prima-

ry effective parameters (well-depth 
fε  and/or collision-diameter 

fσ , first of all) de-

termined for the same ( ),g l rφ -function. At last, a possibility of metastable, at best, 

local heterogeneous f-states, simulated by the conventional MD- and MC-techniques 
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should not be excluded from analysis of the predicted thermodynamical properties (in 

spite of the formal, highly-modelistic signs of the attained equilibration). 

To test and corroborate the proposed FT/LJ-methodology of CXC-simulations 

carried out in the framework of CVL-diagram, the choice of argon in Sections III,IV 

seems to be the most appropriate . Its experimental and correlated by the empirical 

EOS data [18,19] as well as simulated [20] CXC-data incorporated in the fundamen-

tal EOS [21] are plentiful. Thus, the detailed classical and non-classical variants of a 

unified EOS are also well-known. The widespread belief in the similarity of real Ar to 

the model LJ-fluid is here noteworthy. Its correctness will be discussed below in the 

context of comparison with the FT/LJ-predictions of the present work. 
 

3. Main concepts and hypotheses of cvl-diagram. The above-mentioned at-

tempts to lay the foundations of the third-order phase (g,l)-transition at T ,P+ + -states 

(see, for example, [5,6]) are similar to the long-standing problem of supercritical qua-

si-spinodal (locus of zero-curvature: ( )2 2/ 0
T

P
+

∂ ∂ρ = ) formulated by 

Semenchenko [22]. This author introduced the notion of above-critical phase transi-

tion in spite of the unified EOS and the Gibbsian concept of a homogeneous equilib-

rium phase used in consideration. The manifold of gas-like ( )T ,P+ + -states at 

c
−ρ ≤ ρ  located within this locus was termed by him [22,23] the region of a lowering 

f-stability. However, this appro-ach needs the high-level accuracy of EOS to be con-

vincing in its conclusions. 

The same problem arises if the widely discussable construction of so-called Ze-

no-line (locus of the unit quasi-ideal-gas (qig) compressibility factor 1qigZ = ) 

should be obtained [23-25]. It was used by many authors [24-29] for CP-predictions. 

The construction of Zeno-line covers continuously the whole f-range between two as-

ymptotic Boyle’s points ( )1, 0B ZT =ρ →  and ( )1, 0B ZT =ρ → . Its original definition 

of BT -parameter [23] is based on the Boyle’s condition accepted for the model-

dependent second virial coefficient: ( ) 0BB T =  chosen for (N,V)-system. So one can 

use either its approximate estimate for the vdW-fluid, for example, or the more so-

phisticated interpretation for the LJ-fluid [24,25] and so on: 

( )0 0/ ( ) / / ( )vdW B BB b a kT a T a kb a k b≈ − = = ρ          (6) 

( )
1

1 / 1

B

B Z
Z

B B BT

T dB T

C T dT T
=

=

  ρ ρ   ≈ = −  ρ   
 .                                  (7) 

The restrictions of the hardly available accurate knowledge of the third virial co-

efficient ( )BC T  as well as of the T-derivative of the second coefficient calculated at 

the sought-for Boyle’s temperature BT  are obvious. They lead, often, to the rather 

rough estimates of B-parameters and CP-position by Eqs.(6,7) complemented by the 

rule of «rectilinear diameter». 
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It was shown recently [15] that such model-dependent uncertainty including that 

arisen due to the fit of empirical data is inherent for the prescribed linearity of Zeno-

line. This feature makes the related Zeno-line with the other prescribed line of recti-

linear diameter to be the rather ambiguous methodology. The latter points out sup-

posedly the position of ( )c cTρ  -value on the actual CXC. Even the rather unrealistic 

classical variant of the symmetric lattice gas has been exploited [26] for real fluids to 

develop the predictive scheme for estimation of cZ -values. 

Unfortunately, the relative failure of such formalism in the certain CP-

predictions is recognizable not only by the asymptotic singularity of CXC-diameter 

[32] and/or its evident curvature for such polar fluids as methanol or water [26-28]. 

Its implicit but essential constraint is just the attempt to connect by the continuous 

Zeno-line the region of a very dilute fluid ( )1 0Z=ρ →  near ( )1 0B ZT , P = → -point 

with a practically incompressible low-temperature [15,17] liquid ( )1 0ZT = →  in the 

vicinity of ( )1, 0B ZP =ρ → -point. FT-model considers both asymptotic qig-

uncertainties of the type 0/0 in the formal 1qigZ = -definition as the questionable con-

sequences of such attempt. 
 

4. The fluctuational type of potentials. We have recently argued [14,33] that 

even the role of a dominant variable in above f-regions (1 / kT  in the former gaseous 

f-region and ρ in the latter liquid-like l-region) is drastically distinctive. The distinc-

tion should be reflected in the respective forms of f-dependent EOS. We report below 

the well-known [35-37] virial EOS for g-phase at the very small density truncated af-

ter the second virial coefficient ( )* /B T kT= ε  to emphasize the dominant effect of a 

scaled reverse temperature (l /�∗): 

/ /*

* *

2
1 1 1

3

D n D m
g
LJ

l D l D
Z

n mT T

 πρ        − γ + − γ +      
        

≃ .             (8) 

Here the implied infinite-range Lennard-Jones (l,n/m)-potential is: 

( ) ( ) ( )/ /
n m

LJ r l r r φ = ε σ − σ  
,                                      (9) 

3D =  – dimensionality; ( )xγ  – Euller’s gamma-function, ( 4 12 6l ,n ,m= = = ) – the 

realistic most popular set of universal LJ-parameters and the reduced density 
*ρ : 

( )3
02 / 3 4v bπσ ρ = ρ≡ ρ is equivalent to the vdW-excluded volume. 

The FT-estimates of the substance-dependent molecular parameters are princi-

pally different from those based just on the experimental B(T)-data for g-states [36]. 

One should know CP-parameters and two main PCS-factors ( c cZ ,A Ri≡ ) of similari-

ty to predict the standard pair ( ,f fε σ ) of molecular characteristics in any f-phase for 

any simple or complicated substance [11,12,14,15]: 

( ), 1 /g l
c c c c ckT Z kT Pε = − = − ρ ,                                   (10) 
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( ) ( ) ( ){ }1/3 1/3
3 / 2 3 2 / 4 1g

g c c cb A A σ = π = − πρ −  ,                (11) 

( ) ( ) 1/31/3
3 / 2 1/ 2l

l cb  σ = π = πρ  .                                (12) 

The last FT-definition is quite important for the formulation of GFA-principle 

and for its realization by the CVL-diagram methodology. Eq.(12) can be derived 

from Eq.(11) by the substitution of the universal for all vdW-fluids critical slope 
0 4cA = . So to determine the value of effective diameter 

lσ  in l-phase one should use 

not only three actual CP-parameters ( , ,c c cT P ρ  or cZ ) from Eq.(10) but also the im-

plied classical vapor-pressure slope: ( )0

c

v
T T

dP / dT
→

. This FT-definition elucidates 

the meaningful inherent correlation between two fundamental vdW- and LJ-models of 

f-states. 

To illustrate this important conclusion of FT-model let us note that Eq.(8) must 

lead to the Boyle’s condition 1
g
LJZ →  by two concomitant trends: 

* 0ρ →  and: 

 ( ) ( )
4* 3 / 2 / 7 / 4 3.441B att repT l  → γ γ  ≃ .                         (13) 

This known LJ-result [34] provides the following. FT-estimate of the Boyle’s 

temperature: 

( )* * */ 1 2.437B B c B cT T T Zτ = = − ≃ .                               (14) 

Its distinction from the larger estimate ( 2 627B .τ = ) reported by Ben-Amotz and 

Herschbach [24] is explainable by the “universal” LJ-estimate: 1 31*
cT .≃  [20,21]. It 

corresponds to FT-estimate: 1 412*
cT .≃  obtained namely for Ar. Thus our estimate: 

150.66Ar
B BT = τ ⋅  K 367 2.≃  K is significantly lower than that reported in [24]: 

408Ar
BT =  K – estimate based on the hardly available data from Eq.(7). At the same 

time, the vdW-variant ( 0 4cA = ) extended on the entire range of f-densities ( ]0, Bρ∈ ρ  

leads independently to the similar values of vdW-estimates following from Eq.(6): 

9 2.627B cZτ = ≃ . It gives the value 395 8BT .=  K usable by many authors [23, 25-

27, 29]. 

The inherent correlation between vdW- and LJ-models [11,12] becomes espe-

cially apparent at the discussion of Bρ -magnitudes. FT-estimate of 

( )0 /B B cTω =ρ → ρ -value is independent on Zeno-methodology (as well as, the 

above-discussed FT-estimate of Bτ ) and is based on the local FT-EOS derived 

[14,33] for l-phase of LJ-fluid: 

* / * /
*

1l n D m D
LJ

l n m
Z

D DT

 − = ρ − ρ 
 

.                           (15) 

Its solution at the condition 1l
LJZ =  and the arbitrary *T  provides the value: 
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( )/
* */ / 0.1905 3.711

D n m

B B c
n

m

− −
 ω = ρ ρ =  
 

≃ .                    (16) 

It is the physically meaningful quantity ( * 1/ 2Bρ = ). It corresponds to the esti-

mate: 2 63 0 713 3 689. / . .=  (~0.6 %) obtained by Ben-Amotz and Herschbach [24]. 

They derived it from the theoretical virial coefficients [36] for the infinite-range (i.e. 

mf-) LJ-potential (used at the estimate of 2 63B .τ =  and Zeno-slope 0.713). For Ar 

these authors obtained the essential deviation: 2 70 0 775 3 484. / . .=  from the suppos-

edly basic LJ-fluid. Their estimate of Bω  is closer to the Timmermans-vdW estimate 

[23] 1 3 42B c/ Z .ω = =  which fails, however, for the recommended in [20,21] the 

“best” estimates: ( )* * */ 0.126 / 0.314 1.31 0.3063LJ
c c c cZ P T≡ ρ = ⋅ =  ( 3.265LJ

Bω = ). 

The independent FT-predictions by Eqs.(15,16) are based on the realistic FT-

values of critical density * 0.1905cρ =  and critical temperature 1 412*
cT .=  for Ar 

( 0 2919cZ .= ). They will be used below instead of the conventional LJ-set [20] as the 

reference LJ-parameters of mf-criticality. The aim is to introduce then the well-

established FT/LJ-procedure of a short-range LJ-potential. It follows from GFA-

principle and from FT-estimate of gσ -diameter by Eq.(11). Hence, the inherent inter-

relationship between the properties of g- and l-phases implied by Zeno-methodology 

does exist in FT-model too. However, it is much more subtle in the latter, which re-

jects completely the predictive methodology of a unified EOS. 

In particular, the shape of l
LJZ -contours for the local FT-EOS (15) derived ex-

clusively for liquid is the very different from that illustrated by [24] for CH4. Never-

theless, the locus of maxima for the set of l
LJZ -contours coincides with the unique 

FT-predicted isochore: 2.624tω = . It seems to be passing through or nearly the real 

triple point: 2.639tτ =  of Ar [18,19]. This FT-isochore of a triple point tω  forms to-

gether with the isochore of a closed-packed solid Bω  the specific for every substance 

range of densities: 3.711 2.624B tω ÷ω = ÷  in which the liquid might certainty exist 

only as the metastable one. Such simple and plausible FT-estimate of two boundaries 

restricting the acceptable range for a variety of phase transitions between the crystal 

solid (cs), amorphous solid (as) and metastable liquid (ml) can be very useful for the 

model calculations. 

One may conclude that the common mf-restrictions of above EOS-forms are: 

(i) the implied infinite range of pair interactions; 

(ii) PCS-concept of only two main molecular scales ( ),ε σ  or thermodynamic scales 

(a,b) while, at least, three independent critical parameters ( ), ,c c cT Pρ  are neces-

sary to indicate the fluids with the interactions deviated a substantially from the 

reference, mf-based LJ-potential; 

(iii) the unspecified, strictly speaking, region of EOS-adequacy because, in practice, 

one compares the theoretical values of T-dependent virial coefficients in a step-
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by-step manner with their “experimental � –dependent counterparts” to fix such 

regions; 

(iv) the loss of important thermodynamic information in any two-term EOS arisen 

due to the restrictive (physically oversimplified) nature of the conventional ide-

al-gas (ig) reference EOS: 1igZ =  [34]; 

(v) an unsatisfactory choice of the more sophisticated but singular reference  

models of f-states (hard or soft spheres (hs or ss), rectangular (square) or trian-

gular potential wells (sw or tw) and so on) in the frameworks of more advanced 

perturbation expansions. 
 

5. The fluctuational nature of correlation integrals. To explain the general 

concept of CVL-diagram, let us remind that Zeno-line does not provide any infor-

mation concerning either the metastable f-phases or solid cs- and as-phases. Its ap-

proximate linearity of Eq.(7) in the ( ),T ρ -plane stems from the elimination of one 
0/
B

bρ ≡ ρ ρ -root due to the adopted classical qig-condition 1vdWZ =  in the original 

vdW-EOS; 

0

1
1

1 1
vdW

B

b a b a
Z

b bk T b bk T

ρ ρ ρ
ρ ρρ

 
− = − = − − − 

.                       (17) 

The same qig-condition applied to the local LJ-EOS (8) for g-phase and to the 

local Eq.(15) for l-phase leads either to the similar artificial *
BT -isotherm (instead of 

*
BT -point at * 0gρ → ) or to the artificial *

Bρ -isochore (instead of *
Bρ -point at 0*T → ), 

respectively. Their artificial alternative is the strict linearity of Zeno-line and the in-

terchangeable role of reduced density 0/ Bρ = ρ ρ - and reduced field 0
BT T / T= -

variables following from Eq.(7). Thus, the used by many authors [23,24,29] defini-

tion of second virial coefficient ( )vdWB T  by T-hyperbola from Eq.(6a) does not ex-

clude the existence of curvature in the supposedly “rectilinear” CXC-diameter for the 

original vdW-EOS. GFA principle consider that the main shortcoming of this cubic 

equation is its implied concept of a unified EOS. One should avoid it to retain the ad-

vantages of simplicity and to provide the physically-motivated f-description.  

Recently we have proposed [12,14,33] to distinguish three different fluctuation 

(f- ), mesoscopic (m-) and gaussian (g-) regimes in dependence on their finite-volume 

scales chosen at the study of (N,V)-system. The respective scale of ranks (from the 

complicated FT-EOS to its simplest variant) is: 

( ) ( )
( )

( )
1

1

f f ff
FT

f

b T c T a T
Z

b T kT

ρ − ρ
− = −

− ρ
,                               (18) 

( ) ( )
( )

( )
1

1

f c f c f cm
FT

f c

b T c T a T
Z

b T kT

ρ− ρ
− = −

− ρ
,                            (19) 
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0

1
1

fg
FT

f

b B
Z T

b T
ρ

  ∂ − = ρ −    − ρ ∂  

,                                    (20) 

where ( )0 ,B T ρ  corresponds [37] exactly to the original vdW-EOS (17). Its introduc-

tion refines the definitions of Boyle’s parameters in comparison with Eqs.(6,7): 

( )
1

0 0 /B B T B T

−

ρ

 
ρ = ρ − ∂ ∂ 

 
,                                       (21) 

( )0 0/ /B BT T T B T
ρ

= ρ ∂ ∂ .                                          (22) 

The smallest volumes are located in the range of locally-heterophase fluctua-

tions (f-regime) formed by two limits of volume. The lowest boundary is compatible 

with the incompressible hard-core volume: 
3d∼  of the FT-modified short-range 

FT/LJ-potential [11, 14, 33] with three characteristic constants ( , , cd rε σ >  – the cut-

off radius of direct interparticle attraction). The reduced value of latter ( /crλ = σ ) 

normalized by either CP-dependent 
gσ  from Eq.(11) or by cρ -dependent 

lσ  from 

Eq.(12) is assumed to be f-independent. It forms the highest natural boundary of f- 

regime: 3
cr∼ . Any simulations of (N,V)-system performed within the above bounda-

ries of volume ( )3 3
cV d , r∈ ∼ ∼  should be controllable by the most general FT-EOS  

(18) with the known set of f,T-dependent coefficients (see [9-12]). 

Its specific form of Eq.(19) for m-regime (its volumes are less than the correla-

tion volume 3ξ   implies the persistence of qig-fluctuations. Thus the conventional ig-

asymptotic trend at ( 0, 0Pρ→ → ) [35] is modified in the discussed f,m-regimes 

where ( )1qig fZ c T→ −  or ( )1qig f cZ c T→ − , respectively. We emphasize, once 

more, that FT-model, in contrast to the other fluctuation methodologies in which only 

one extensive quantity N or V is fixed, studies and simulates the real single-phase f-

systems with the average density /N Vρ = . The posed aim is an investigation of the 

field fluctuations T , Pδ δ  without any attempts to use the basic ig-model of statistical 

mechanics formulated for the system of material non-interacting point-particles [35] 

( 0, 0ε → σ→ ). Its formal trend to the infinite isothermal compressibility: 

( ) 1 1ig
T kT P

− −χ = ρ = →∞  is obvious. 

The classical WMG-phenomenology of a first-order phase transition introduces 

the similar and unrealistic from our viewpoint locus of infinite values ( ),T T−χ ρ  

termed spinodal [23]. Such a highly-model definition for a finite-volume (N,V)-

system at a given density leads to its inaccessibility by experiment [37]. Moreover, 

itself Tχ -“indicator” of the fluctuation behavior can be formally excluded [12] from 
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the statistical-mechanical system of equations written for the total pair ( ),H Tρ - and 

direct ( ),C Tρ -correlation integrals [2,35]: 

( )
( )

( )
,

, 0
1 ,

C T
H T

C T

ρ ρ
−ρ ρ =

−ρ ρ
.                                     (23) 

The spectacular similarity of Eq.(23) with the right-hand-side of vdW-EOS (18) tak-

en under the qig-constraint 1vdWZ =  demonstrates unambiguously that the above-

mentioned exclusion of an “extra”-root ( ),C Tρ ρ  at this condition well lead at 0ρ→  

to the apparent congruous relation denoted below by the double arrow: 

( ) ( ) 0, / , /BH T C T T Tρ ρ ⇔ .                                      (24) 

It does not realized along the classical spinodal where: ( ),spH Tρ →∞  due to its 

definition. The refinement achieved by Eq.(22) becomes of great importance. 

This observation was one of the main stimulus for FT-model [12] to introduce 

the physically-realistic finite limits of action for correlation integrals (i.e. the total 

correlation radius: ( ),Tξ ρ  for ( ),H Tρ  and the direct correlation radius of attraction 

cr  for ( ),C Tρ ). Hence, the implied FT-correction to the total correlation inte- 

gral arisen due to the introduction of fluctuation coefficient ( )fc T : 

( ) ( ) ( )
( ) ( )

( )( )
, ( ) , ( )

1

f f
FT f FT

f

a T c T
C T b T a H T b

k T b T
ρ ⇔ ρ ⇔ +

ρ − ρ
      (25) 

has everywhere the finite value in the wide compressible f-regime even if the inequal-

ity crξ >  is fulfilled. Respectively, the divergence of ( ),FTH Tρ  can be realized only 

in the singular CP ( ,c cT Tρ→ρ → ) for which the limiting correlation radius tends 

unquestionably to infinity: cξ →∞ . 

Let us note that the ρ-dependent denominator of Eq.(25b) can be expressed [33] 

in terms of the reduced pressure 0
BP / kT  too due to the interchangeable role of 

0/ Bρ ≡ ρ ρ - and 0
BT T / T≡ -variables along Zeno-line: 

0 0 0 0 0 0
1 1

B B B B B B

P T T
P

kT T T

   ρ ρ
≡ = − = −      ρ ρ ρ   

.                          (26) 

This symmetric bifurcation of Zeno-variables noticed and discussed by many 

authors (see, in particular, [16,17]) makes the proposed in [24] separability by Zeno-

line of the region of “soft” fluid from the region of “hard” fluid to be not enough in-

formative. It is interesting to note, in this context, that the proposed by Ben-Amotz 

and Herschbach interpretation of Bρ  in terms of ( )BC T  from Eq.(7) will lead to its 

divergence ( ) ( )/ 1BC T b b= ρ − ρ    at 0ρ→ . 

One should consider undoubtedly the other ( )P,T - and ( ),P ρ -projections at 

the construction of CVL-diagram. Besides, the alternative dividing line located be-

tween f- and l-regions should avoid the evident crossing of the cs- and as-regions by 
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the standard Zeno-line. This rather complicated problem is solvable, in principle, by 

the non-classical FT-notion of an universal ml-boundary. It was introduced in the 

frameworks of CVL-diagram by the unit relative compressibility line (i.e. not by the 

unit compressibility factor line) related to the chosen unit: 0V / Vττ =  [12] of a fixed 

initial volume 0V : 

( )
( ) /

2

0
/ 1

ml

T
T

T

N
k T P

N
+ −

τ

τ τ

∆  χ
= = ∂ρ ∂ =  χ 

.                           (27) 

This boundary of a metastable liquid (ml) is independent on the absolute value 

of density mlρ . It corresponds to the achievable balance of qig-compressibility and 

ml-compressibility at any local density and local temperature from the total f-ranges 

( 0, Bρ→ ρ ) and ( 0 BT ,T→ ), respectively. There are two possible strategies of its es-

timation. The first type corresponds to FT-EOS (19) with three constant cT -

dependent coefficients. They are determinative in the m-regime of mesoscopic vol-

umes located between 3
c~ r - and 

3~ ξ -limits: 3 3~ ~cr V< < ξ  (of course, if the respec-

tive difference ( )crξ −  exists). It appears undoubtedly in the small near-critical re-

gion in which the density fluctuations of range longer than that of the intermolecular 

attraction become significant. The second type relates to the much wider g-regime of 

gaussian fluctuations in the macroscopic finite volumes: 3~V > ξ . It corresponds to 

vdW-EOS (20) which is applicable, however, in accordance with GFA-principle [11] 

to both g- and l-phases separately. Only in this g-regime as well as in its local realiza-

tions for a dilute g-phase and for a low-temperature l-phase by Eq.(15) the qig-

constraint: 1qigZ =  is fulfilled. 

 

Conclusions. The proposed finite-range type of fluctuation potential provides 

the promising tool for the simulation mesoscopic study of heterogeneous systems. In 

the small vicinities of a critical point and coexistence curve the obtained by the 

standard MD- or MC- simulations information can be, in principle, inaccurate or even 

qualitatively distorted. The reason of both potential drawbacks is the possible misin-

terpretation of the simulated runs and properties. One assumes usually that the stand-

ard nano-scales of volume and the typical pico-scales of time concern to the average 

properties of a macroscopic system. This assumption needs, however, the verification 

in the above hardly testable by the direct experiment regions of a phase transition. 

The ap plication of the classical binonal/spinonal concepts based on the gibbsian 

strictly homogeneous phases becomes asymptotically questionable in the scales of 

mesoscopicity. More accurately, the traditional mean-field VLE-diagram of equilib-

rium between the model coexistent infinite-volume/ infinite-lifetime phases of the 

different but homogeneous densities and entropies is the highly model concept. The 

physics of aerosol systems seems to be the appropriate field for the thorough verifica-

tion of the proposed fluctuation formalism. 
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Роганков В. Б., Роганков О. В., Швец М. В. 

Источник мезоскопических, критических и Бойлевых сингулярностей 

симулированных флуктуационным потенциалом. 

 

АННОТАЦИЯ 

Предложенная недавно методология конгруэнтной пар-жидкостной диаграммы, 

использована для предсказания всего интервала равновесия жидкость-пар в тестовом 

флюиде-аргоне. Методология основана на сформулированном ранее принципе глобаль-

ной флюидной асимметрии, в котором отвергнута распространенная идея единого 

уравнения состояния, обшего для обеих, как подкритической, так и надкритической 

областей существования. В противоположность обычной пар-жидкостной диаграм-

ме, локализованной между критической точкой и тройной точкой, конгруэнтная диа-

грамма описывает значительно более широкий интервал флюидных состояний, про-

стирающийся между двумя обобщенными точками Бойля (при исчезающе-малой 

плотности при исчезающе-малой температуре), предсказанный с помощью модели 

флуктуационной термодинамики. Установлено новое расположение, форма и обрат-

ный знак кривизны для характеристик классической спинодали. Новая граница мета-

стабильной жидкости не проходит через критическую точку и может быть опреде-

лена во всем интервале флюида, включая его сверхкритическую часть. 

Классический, но не соответствующий теории среднего поля источник сингулярно-

стей на основе глобальной асимметрии может быть установлен без привлечения фе-

номенологии скейлинга. Тем не менее, полученные данные (уплощение в околокритиче-

ской области зависимости температуры от ортобарических плотностей) соответ-

ствуют результатам теории критической области. Основные идеи гибссовской тео-

рии равновесий между двумя идеализированно-однородными сосуществующими фаза-

ми достигает в этой области предела своей применимости.  

Ключевые слова: конгруэнтная пар-жидкостная диаграмма, граница метастаби-

льной жидкости, глобальная флюидная ассиметрия. 
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Роганков В. Б., Роганков О. В., Швець М. В. 

Джерело мезоскопічних, критичних і Бойлевих сингулярностей симу-

льованих флуктуаційним потенціалом. 

 

АНОТАЦІЯ 

Запропонована недавно методологія конгруентної пар-рідинної діаграми, яка викори-

стана для передбачення всього інтервалу рівноваги рідина-пар в тестовому флюїді-

аргоні. Методологія заснована на сформульованому раніше принципі глобальної флюїд-

ной асиметрії, у якій відкинута поширена ідея єдиного рівняння стану, загального, як 

для підкритичній, так і надкритичної області існування. На протилежність звичайній 

пар-рідинній діаграмі, яка локалізована між критичною точкою і потрійною точкою, 

конгруентна діаграма описує значно ширший інтервал флюїдних станів, що тягнеться 

між двома узагальненими точками Бойля (при зникаюче-малої густини і при зникаюче-

малої температурі), передбаченої за допомогою моделі флуктуаційної термодинаміки. 

Встановлено нове розташування, форма і зворотний знак кривизни для характеристик 

класичної спінодалі. Нова межа метастабільної рідини не проходить через критичну 

точку і може бути визначена в усьому інтервалі флюїду, включаючи його надкритичну 

частину. 

Класичне, але не відповідне теорії середнього поля джерело сингулярностей на основі 

глобальної асиметрії може бути встановлено без залучення феноменології скейлінга. 

Проте, отримані дані (сплощення у близько критичної області залежності темпера-

тури від ортобаричної густини) відповідають результатам теорії критичної області. 

Основні ідеї гібссівській теорії рівноваг між двома ідеалізовано-однорідними 

існуючими фазами досягає в цієї області межі своєї застосовності. 

Ключові слова: конгруентна пар-рідинна діаграма, межа метастабільної рідини, 

глобальна флюїдна асиметрія. 

 


