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Classic origin of mesoscopic critical and boyle’s singularities simulated by
fluctuational potential

We have used the developed recently methodology of the congruent vapor-liquid (CVL) di-
agram for prediction, in particular, of the entire vapor-liquid equilibrium (VLE) diagram in
the test-fluid argon. The former is based on the proposed earlier principle of the global fluid
asymmetry (GFA) which rejects the conventional concept of a unified fluid equation of state
(EOS) in both sub- and supercritical regions. In contrast to the traditional VLE-locus appli-

cable in the restricted (subcritical) range between critical (T,) and triple (T,) temperatures,
the CVL-locus spans the much more wide ranges of fluid states located between the general-
ized Boyle’s (B) points (p—>0,T," ], (T —0,p}" ] predicted by FT-model of fluctuational

thermodynamics. The new shape, location and the opposite sign of curvature for the boundary
of metastable liquid which does not pass over CP (critical point) have been revealed in the

global fluid (f) temperature range (0,T;" ) including its supercritical segment. The classical

GFA-origin of the asymptotic criticality is unambiguously established without any appeals to
the non-classical scaling phenomenology but in accordance with its main findings, at least, in
the regions of stable and metastable liquid. Since the fundamental concept of a homogeneous
equilibrium Gibbsian phase achieves the limit of its applicability in the simulated discrete
N, V-systems of the Lennard-Jones’ particles, their metastable, at best, states are highly-
probable in the conventional scales of VLE-simulation.

Keywords: congruent vapor-liquid diagram, boundary of metastable liquid, global fluid
asymmetry.

1. Introduction. There is a set of objective difficulties in the various experi-
mental and/or simulation methodologies usable for determination of an actual (i.e.
non-mean-field (mf)) critical point’s (CP-) position. At least two parameters from its
EOS-thermodynamic set: {7,.,P. (critical fields [1]) and p.,Z.=P./p. kT, (critical
densities or volumes: v.=1/p,)} are hardly measurable by the direct experiment
with an uncertainty better than one percent. The standard extrapolation of the coexist-
ence-curve (CXC) data simulated far away from CP by a combination of the asymp-
totic scaling law and the so-called mf-rectilinear diameter is the rather arbitrary pro-
cedure. Its uncertainty becomes especially undesirable within the small asymptotic

CP-vicinity: A7 = ‘1 -T/ Tc‘ <107>. The discrepancies between the recommended by

different authors p,.-values can lead, in principle, to the significant uncertainties at

the estimation of standard substance-dependent amplitudes B, I, D and the respective
universal EOS-exponents: B, y, 6 [1, 2]. The isochoric heat capacity C, -parameters

A, a become especially elusive in this case. The common feature of the power-law
definitions is an attempt to elucidate the asymptotic behavior of the strongly- or
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weakly-fluctuating [1] local densities (p, v, s — specific entropy) at the given subcriti-

cal (T_,P_)— and/or supercritical (T+,P+)—equilibrium state-points. One usually

determines the non-classical CP-trends in terms of the smooth functions defined
alongside either CXC or the CP-isolines: p, [T‘ —>T1.,P (T‘)] . P, [T‘ — TC,PV(T‘)} )
p(P”’ - PC;TC), Ay (T+ — TCQPC)- The square branches denote here and below the
implied functional dependences along CXC.

Strictly speaking, only the most problematic for an experiment CP-exponent

implements an important inverse task in which the pressure p/- (i.e. the thermo-
dynamic field [1]) is considered as the function of independent density p given along-
side the fixed a priori T,-value. At a glance, just this choice should be appropriate to

test the asymptotic scaling law P(p” "> p,T ) with two above-mentioned parame-

ters (D, 0) not only by the direct experiment but also by the most usable NV7-
ensemble of MD (molecular-dynamical) simulations [3]. Obviously that both exten-

sive but, at best, mesoscopic (Sect. 1l) parameters N,V =I? of a simulated box

should be simultaneously fixed to study the realistic fluctuation dynamics of any
equilibration in the CP-vicinity. However, there are some paradigms of the conven-
tional non-classical criticality, which forbid to realize namely such plan.

One admits that all real fluids (f) (Ar, CO,, H,0,...) belong to the special class
of universal criticality [1,2] which is determinable by the Ising-based Ib-systems. Its
distinctive features follow from the adopted so basic Ib-model of a lattice gas:

(1) the imposed primitive thermodynamic Ib-symmetry between the respective lig-

uid (/) and gas (g) CXC-densities at 7~ <7, with constant (vertical) 7-in-
dependent “diameter”: p, = [pg (T’) +p, (T’ )] /2;

(11) the underlying “particle-hole” lattice-gas’-symmetry symbolized by the + signs
standing before both CXC-branches: B, = ‘—Bg

,B, =B, (it is usually postulat-
ed also for the other subcritical EOS-exponents: 7; =74} o] = 5g );

(ii1)the absence of an inherent for real fluids isothermal latent heat of (g,/)-
transition: h(T_) =T [Sg (T_) — 5] (T_)} in the ordinary lattice-gas;

(iv)the implied external zero-field and the respective zero-value of its 7-derivative
(density) lead to the degeneracy of the thermodynamic Clausius-Clapey-ron’s
differential equality.

The remarks (i-iv) confirm the rather restrictive nature of the adopted basic Ib-
model at the description of CP-vicinity in real f-states. On the other hand, the as-
sumed by the original van der Waals’ vdW-EOS concept of an isothermal (g,l)-

continuity in both (7' +/ ) f-regions leads unavoidably to the known vdW-loop with
its conventional but rather controversial interpretation of the binodal-spinodal con-
struction. We mean here the physically questionable for a finite-volume (&, V)-system
of interacting particles predictions of the equilibrium unstable states (7 <0), the
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negative pressures (P <0) of spinodal decomposition (?7) and the supposedly errone-
ous critical mf-parameters (TCO,PO,pS,ZCO =3/ 8) for the so-called Andrews-van der

Waals’ CP [2,4]:
(6P/3p), =0 (a) (azp/apz)f =0 (). (1)

The first condition of the type Eq.(1a) defines also the mf-spinodal at 7" < T, .
Simultaneously, it should be fulfilled along any two-phase isotherm-isobar (T _,P_).

Some authors have exploited recently the similar vdW-formalism of (g,/)-
continuity combined either with the oversimplified particle-hole model [5] or with the
non-equilibrium gradient-type’s [4,6] models of non-homogeneity. The common aim
was to reveal the presumed existence of the higher (third)-order (g,l)-transition in the

supercritical T -region of f-states. In one case [5] a combination of the precise tabu-
lar EOS-data for Ar, CO,, H,O with the modelistic percolation transition has led to
the “disappearance” of a single mf-CP itself determined by Eq.(1). More accurately, it

becomes the horizontal critical (TCPC) isotherm-isobar-line. Such construction re-

sembles, of course, the coincidence of isotherms with isobars in a first-order transi-
tion. Their presumable critical “counterpart” termed rigidity [5] 1s limited, however,
by two “spinodal” point-densities of the reversible percolation ( g —/)-and (/ - g)-

transitions. In other case [6], a combination of the thermodynamic four-dimensional
phase space formed by coordinates (fields) and momenta (densities) (P,T ;P,0 = ps)

with the non-equilibrium gradient terms (defined only for densities of the number
particles: p=N/V and entropy c=S/V) was used. Such approach has provided a
possibility to discuss the dynamical (i.e. t-dependent) PVT-behavior (?) of the vdW-

? , VGH .
Besides, the proposed in [6] methodology introduces on the ad hoc basis the continu-
ous dependence for both vdW-coefficients (a,b) defined along an isotherm-isobar

too: b(T ,P), a(T ,P). Only 7-dependent coefficients are admissible (Sect. ILIII) in

the framework of any cubic EOS.

The FT-(fluctuational thermodynamics’) model developed earlier [7-12] and
used in the present work excludes the itself traditional notion of an isotherm-isobar
determined as a line with the continuously variable densities. The latter leads not only
to the formal divergences of compressibility y, and expansivity ap everywhe-re

fluid’s criticality in terms of its extended chemical potential: M[T ,P;p,c ‘Vp

within mf-binodal. Indeed, the choice of the standard grand-canonical (V,;T,u ) and

isobaric (N, P,T)-ensembles with two fixed coordinates-fields cannot define compre-
hensively [4] the state of two-phase or, generally, heterophase assembly. Both pairs
of their conjugated momenta-densities: p,c =ps or specific (per mole or per particle)

quantities: v,s may vary locally within the given limits without changing of the fixed
fields: u,T or P,T respectively. In other words, the trans-formation of the measure-

able P,v,T EOS-surface into that determined exclusively by the fields: P,u,T
Gibbsian-surface [1] might, in principle, "wash off" the realistic heterophase struc-
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tures of real fluids and their mixtures.

2. Fluctuational — thermodynamic nature of mesoscopic simulations. Ther-
modynamics assumes a possibility of the Gibbsian (i.e. macroscopic) isothermal dif-
ferentiation applied to the thermodynamic fields of pressure P and chemical potential
u. The latter is determined for a pure substance as the specific (per particle) Gibbs’

function: G=N u(T ,P). The methodology of unified EOS adopts that its incon-
sistent variable of the mean (i.e. uniform) number density p=N/V =1/v can be

used as independent one either to realize the Maxwell’s rule at 77 <7, or to define

the “fundamental extensive state function” of “rigidity” [S] at T’ > e

(dP1dp) sy =p(di/ dp)psy = W(T+). @)
This local p-parametrization of the Gibbs-Duhem’s differential form is based on
the implied assumption of a smooth EOS-surface p(P,T ) . It becomes not completely

correct (due to the inconsistent choice of independent variable) if the finite-volume
small N-systems (termed in [10-12] the mesoscopic N,V-systems) composed by the
small number of constituent particles should be considered. In this case, one has to
distinct [30] the uniform above-mentioned chemical potential {=G/ N from its dif-

ferential form p=(0G /0N ). . Such distinction leads to the N-dependent difference,

which one has to take into account at the simulation of two-phase f-states. The
Gibbsian related to one particle model of a smooth field u(T ,P) implied, in particu-

lar, by Eq.(2) as well as by the conventional methodology of VLE-simulations [13]
should be modified in this case by N-dependent equality:
(aﬁt/éN)T’P:(u—ﬁ)/NzAp/N. 3)

This refinement of the standard test-particle methodology proposed by Widom
[31] 1s especially important due to the practically mesoscopic (m-) volumes of the
mostly simulated VLE-diagram. Hill [30] emphasized that small system effects in the
regions of phase transition and criticality are especially noticeable. In particular, an
additional independent variable N (discrete by nature) appears in the generalized
Clausius-Clapeyron’s system of equalities [30]. It can be termed as the formal sign of

mesoscopicity:
oP Sg =S| As
() s o
oT )y Vo =V Av
oT A oP A
[ J -2 (@ [—j - »,  ©)
ON ), NAs ON ),  NAv

where the left-hand sides and the difference Av = (Pl - pg)/ popy are measurable by

experiment or by numerical simulation. Hence, the unmeasurable entropy-dependent
differences Au and As may be appropriately estimated only by Eqs.(3-5) with the

implied differential equality between two uniform chemical potentials d[i g= dfy
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taken alongside the unique CXC in the field space.
It was argued earlier [7-9] that the necessary thermodynamic choice of an ex-

tensive V-scale for f-state leads in the thermodynamic limit: p= lim (N / V) to the
V—o0

special role of its conjugated variable P-pressure. The respective thermodynamic FT-
Hamiltonian determined in the four-dimensional phase space is degenerated on the

thermodynamic Gibbs’ surface: H(P,T,v,s)=0. The role of a new FT-Hamilto-
nian passes, as a result, just to P(V,T )—EOS with the exclusive role of a constant spe-

cific entropy s (as the path of “FT-motion”). We refer now the interested readers to
the development of an alternative geometric concept by Maslov [16,17] in which just

the alternative role of the Gibbs’-function G = Np(P,T) was discussed. This main

“tool” of classical WMG-phenomenology [9] originated to construct the actual VLE-
diagram on the base of a unified (i.e. common for both coexisting f~phases) EFOS is
highly modelistic by nature for a real mesoscopic finite-volume (N, V)-system. One

cannot realize the verification of the supposed equality i, (T _,P_) =Ly (T _,P_) by

the direct VLE-experiment. Moreover, its plausible two-phase imitation in the widely
usable numerical GEMC (Gibbs ensemble Monte Carlo) simulation [13] requires, to
our mind, the serious oversimplifications. It arises just due to the implied isothermal

1) f(p 7T ) -dependencies. GFA-principle omits the described “u-problem” at the
construction of CVL-diagram.
In the present work we intend to argue that some postulates of the classical

WMG-phenomenology [9] should be rejected, at the study of realistic finite-volume
(N, V)-systems. In their mesoscopic volumes (simulated at the given nano-scales of

length and volume V = L3) the main vdW-hypothesis of (g,/)-continuity and reversi-
bility of its two variants (g —/) and (/ — g) achieves the limit of its applicability.

Hence, the impact of a discrete variable (number of particles N) cannot be negligible
at any estimation of the two-phase thermodynamic field (T ,P;u) variables. Moreo-

ver, the different physical nature of mechanical (p = N /V -density, P-pressure (mo-
mentum flux), H = Ej;, +E,, — Hamiltonian (total mechanical energy of a con-

servative force-field) variables and thermal (T — temperature, u — chemical potential
per particle, e=E / N — internal energy per particle, s =S5/ N — entropy per parti-
cle) variables has to be taken into account by the appropriate simulation f~models. As
a result, the unavoidable distinctions in the local discrete structures of g- and /-states
might be presumably described in terms either the different interparticle effective po-

tentials ¢f (r) accepted separately for every f~phase or by the distinguishable prima-

ry effective parameters (well-depth ¢/ and/or collision-diameter o/ , first of all) de-
termined for the same ¢ ’l(r)-function. At last, a possibility of metastable, at best,
local heterogeneous f-states, simulated by the conventional MD- and MC-techniques
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should not be excluded from analysis of the predicted thermodynamical properties (in
spite of the formal, highly-modelistic signs of the attained equilibration).

To test and corroborate the proposed FT/LJ-methodology of CXC-simulations
carried out in the framework of CVL-diagram, the choice of argon in Sections III,IV
seems to be the most appropriate . Its experimental and correlated by the empirical
EOS data [18,19] as well as simulated [20] CXC-data incorporated in the fundamen-
tal EOS [21] are plentiful. Thus, the detailed classical and non-classical variants of a
unified EOS are also well-known. The widespread belief in the similarity of real Ar to
the model LJ-fluid is here noteworthy. Its correctness will be discussed below in the
context of comparison with the FT/LJ-predictions of the present work.

3. Main concepts and hypotheses of cvl-diagram. The above-mentioned at-

tempts to lay the foundations of the third-order phase (g,/)-transition at 7, P -states
(see, for example, [5,6]) are similar to the long-standing problem of supercritical qua-

si-spinodal  (locus of zero-curvature: (82P / 8p2 ) =0) formulated by
T+

Semenchenko [22]. This author introduced the notion of above-critical phase transi-

tion 1n spite of the unified EOS and the Gibbsian concept of a homogeneous equilib-

rium phase used in consideration. The manifold of gas-like (T +,P+)—states at

p <p. located within this locus was termed by him [22,23] the region of a lowering

[f-stability. However, this appro-ach needs the high-level accuracy of EOS to be con-
vincing in its conclusions.

The same problem arises if the widely discussable construction of so-called Ze-
no-line (locus of the unit quasi-ideal-gas (qig) compressibility factor Z;, = 1)

should be obtained [23-25]. It was used by many authors [24-29] for CP-predictions.
The construction of Zeno-line covers continuously the whole f~range between two as-

ymptotic Boyle’s points (7g,pz-; —0) and (pg,T7—-; —0). Its original definition
of Tp-parameter [23] is based on the Boyle’s condition accepted for the model-
dependent second virial coefficient: B (T B) =0 chosen for (N, }V)-system. So one can

use either its approximate estimate for the vdW-fluid, for example, or the more so-
phisticated interpretation for the LJ-fluid [24,25] and so on:

By ~b—alkT  (a) Tp=alkb=(a/k)py ()  (6)

pr_y/ Tp (d_Bj zﬁzl_l. (7)
C(Tg)\dT Jr | pa Tg

The restrictions of the hardly available accurate knowledge of the third virial co-
efficient C(7,) as well as of the T-derivative of the second coefficient calculated at

the sought-for Boyle’s temperature 7 are obvious. They lead, often, to the rather

rough estimates of B-parameters and CP-position by Egs.(6,7) complemented by the
rule of «rectilinear diameter».
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It was shown recently [15] that such model-dependent uncertainty including that
arisen due to the fit of empirical data is inherent for the prescribed linearity of Zeno-
line. This feature makes the related Zeno-line with the other prescribed line of recti-
linear diameter to be the rather ambiguous methodology. The latter points out sup-

posedly the position of p,. (Tc) -value on the actual CXC. Even the rather unrealistic

classical variant of the symmetric lattice gas has been exploited [26] for real fluids to
develop the predictive scheme for estimation of Z . -values.

Unfortunately, the relative failure of such formalism in the certain CP-
predictions is recognizable not only by the asymptotic singularity of CXC-diameter
[32] and/or its evident curvature for such polar fluids as methanol or water [26-28].
Its implicit but essential constraint is just the attempt to connect by the continuous

Zeno-line the region of a very dilute fluid (pz—; —=0) near (I, Ps_; —0)-point
with a practically incompressible low-temperature [15,17] liquid (T 7-1 —>0) in the
vicinity of (pg, P7—; —0)-point. FT-model considers both asymptotic gig-
uncertainties of the type 0/0 in the formal Z;, = 1 -definition as the questionable con-

sequences of such attempt.

4. The fluctuational type of potentials. We have recently argued [14,33] that
even the role of a dominant variable in above f-regions (1/ k7T in the former gaseous
f-region and p in the latter liquid-like /-region) is drastically distinctive. The distinc-

tion should be reflected in the respective forms of f~dependent EOS. We report below
the well-known [35-37] virial EOS for g-phase at the very small density truncated af-

ter the second virial coefficient B(T “=kT/ 8) to emphasize the dominant effect of a

scaled reverse temperature (1 /T”):

* D/n D/m
2np [ D [ D
78, 1= — 1+— |—| — 1+—|]. 8
L‘] 3 [(T*J Y( n) (T*j Y( mﬂ ®
Here the implied infinite-range Lennard-Jones (/,n/m)-potential is:
(I)LJ(F):IS[(G/F)”—(G/r)m}, 9)

D =3 — dimensionality; ]/(x) — Euller’s gamma-function, (/ =4,n=12,m=6) — the

*
realistic most popular set of universal LJ-parameters and the reduced density p :

2o’ p/3= (4v0) p=bp is equivalent to the vdW-excluded volume.

The FT-estimates of the substance-dependent molecular parameters are princi-
pally different from those based just on the experimental B(7)-data for g-states [36].
One should know CP-parameters and two main PCS-factors (Z., 4. = Ri) of similari-

ty to predict the standard pair (af ,Gf ) of molecular characteristics in any f-phase for
any simple or complicated substance [11,12,14,15]:

e8! =kT.(1-Z,)=kT,—P./p,. (10)
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of =(3bg /2n)1/3 ={3(4. -2)/[4np, (4, —1)]}1/3, (11)

o =(38,/2m)"* =[1/(27p,)]". (12)

The last FT-definition is quite important for the formulation of GFA-principle
and for its realization by the CVL-diagram methodology. Eq.(12) can be derived
from Eq.(11) by the substitution of the universal for all vdW-fluids critical slope

Ag = 4. So to determine the value of effective diameter o in [-phase one should use
not only three actual CP-parameters (7,,P.,p. or Z.) from Eq.(10) but also the im-

plied classical vapor-pressure slope: (dPVO /dT )T - This FT-definition elucidates
% c

the meaningful inherent correlation between two fundamental vdW- and LJ-models of
f-states.
To illustrate this important conclusion of FT-model let us note that Eq.(8) must

*
lead to the Boyle’s condition Z f ;7 —1 by two concomitant trends: p — 0 and:

* 4

Ty 1| Y (3/2) 1y (7/4) | =3.441. (13)

This known LJ-result [34] provides the following. FT-estimate of the Boyle’s
temperature:

* %k %k

1=Tg /T, =Tg(1-Z,)=2.437. (14)

Its distinction from the larger estimate (75 =2.627) reported by Ben-Amotz and

Herschbach [24] is explainable by the “universal” LJ-estimate: TC* =1.31 [20,21]. It

corresponds to FT-estimate: T, c* =1.412 obtained namely for Ar. Thus our estimate:

T, g‘” =15-150.66 K =367.2 K 1s significantly lower than that reported in [24]:

T, §4r =408 K — estimate based on the hardly available data from Eq.(7). At the same

time, the vdW-variant (Ag =4) extended on the entire range of f-densities p € (O, p B]

leads independently to the similar values of vdW-estimates following from Eq.(6):
13 =9Z.=2.627 . It gives the value Tz =395.8 K usable by many authors [23, 25-
27,29].

The inherent correlation between vdW- and LJ-models [11,12] becomes espe-
cially apparent at the discussion of pg-magnitudes. FT-estimate of

Op :pB(T —>0)/ p.-value is independent on Zeno-methodology (as well as, the

above-discussed FT-estimate of tp) and is based on the local FT-EOS derived
[14,33] for /-phase of LJ-fluid:

[ (n = m x
ZZ/—1=—*(BP ”/D—Bp ’"/Dj- (15)

Its solution at the condition Zé 7 =1 and the arbitrary 7 i provides the value:
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—D/(n—m)
n
J /0.1905=3.711. (16)

% %
®p=pg/Pc=|—
m
It is the physically meaningful quantity (PE =1/~2 ). It corresponds to the esti-

mate: 2.63/0.713=3.689 (~0.6 %) obtained by Ben-Amotz and Herschbach [24].
They derived it from the theoretical virial coefficients [36] for the infinite-range (i.e.
mf-) LJ-potential (used at the estimate of 75 =2.63 and Zeno-slope 0.713). For Ar

these authors obtained the essential deviation: 2.70 /0.775 = 3.484 from the suppos-
edly basic LJ-fluid. Their estimate of wp 1s closer to the Timmermans-vdW estimate

[23] wp =1/Z.=3.42 which fails, however, for the recommended in [20,21] the

“best” estimates: Z-/ = P, /p.T, =0.126/(0.314-1.31)=0.3063 (o’ =3.265).

The independent FT-predictions by Eqgs.(15,16) are based on the realistic FT-
values of critical density pZ =0.1905 and critical temperature Tc* =1.412 for Ar
( Z.=0.2919). They will be used below instead of the conventional LJ-set [20] as the
reference LJ-parameters of mf-criticality. The aim is to introduce then the well-
established FT/LJ-procedure of a short-range LJ-potential. 1t follows from GFA-

principle and from FT-estimate of o€ -diameter by Eq.(11). Hence, the inherent inter-
relationship between the properties of g- and /-phases implied by Zeno-methodology
does exist in FT-model too. However, it is much more subtle in the latter, which re-
jects completely the predictive methodology of a unified EOS.

In particular, the shape of Zi s-contours for the local FT-EOS (15) derived ex-
clusively for liquid is the very different from that illustrated by [24] for CH,. Never-

theless, the locus of maxima for the set of Z ZL j-contours coincides with the unique
FT-predicted isochore: m; =2.624. It seems to be passing through or nearly the real
triple point: t, =2.639 of Ar [18,19]. This FT-isochore of a triple point @, forms to-
gether with the 1sochore of a closed-packed solid w g the specific for every substance
range of densities: wg +®; =3.711+2.624 in which the liquid might certainty exist

only as the metastable one. Such simple and plausible FT-estimate of two boundaries
restricting the acceptable range for a variety of phase transitions between the crystal
solid (cs), amorphous solid (as) and metastable liquid (m/) can be very useful for the
model calculations.

One may conclude that the common mf-restrictions of above EOS-forms are:
(1) the implied infinite range of pair interactions;
(ii) PCS-concept of only two main molecular scales (&,0) or thermodynamic scales

(a,b) while, at least, three independent critical parameters (T P> P

) are neces-
sary to indicate the fluids with the interactions deviated a substantially from the
reference, mf-based LJ-potential;

(i11) the unspecified, strictly speaking, region of EOS-adequacy because, in practice,

one compares the theoretical values of 7-dependent virial coefficients in a step-

42



dizuka aepoaucnepcHux cucrem. — 2020. — Ne 58. — C.34-50

by-step manner with their “experimental p —dependent counterparts” to fix such
regions;

(iv) the loss of important thermodynamic information in any two-term EOS arisen
due to the restrictive (physically oversimplified) nature of the conventional ide-
al-gas (ig) reference EOS: Zig =1 [34];

(v)  an unsatisfactory choice of the more sophisticated but singular reference
models of f-states (hard or soft spheres (4s or ss), rectangular (square) or trian-
gular potential wells (sw or tw) and so on) in the frameworks of more advanced
perturbation expansions.

5. The fluctuational nature of correlation integrals. To explain the general
concept of CVL-diagram, let us remind that Zeno-line does not provide any infor-
mation concerning either the metastable f-phases or solid cs- and as-phases. Its ap-
proximate linearity of Eq.(7) in the (7,p)-plane stems from the elimination of one

bp=p/p)-root due to the adopted classical gig-condition Z, ;5 =1 in the original
vdW-EOS;

A A (17)
I-bp bkT Q\1-bp bkT

The same gig-condition applied to the local LJ-EOS (8) for g-phase and to the
local Eq.(15) for /-phase leads either to the similar artificial T; -isotherm (instead of

T; -point at pz — 0) or to the artificial p;kg -isochore (instead of pz -point at 7' . 0),
respectively. Their artificial alternative is the strict linearity of Zeno-line and the in-

terchangeable role of reduced density p=p/ p%— and reduced field T =T /T 39-
variables following from Eq.(7). Thus, the used by many authors [23,24,29] defini-
tion of second virial coefficient B, (T) by T-hyperbola from Eq.(6a) does not ex-

clude the existence of curvature in the supposedly “rectilinear” CXC-diameter for the
original vdW-EOS. GFA principle consider that the main shortcoming of this cubic
equation is its implied concept of a unified EOS. One should avoid it to retain the ad-
vantages of simplicity and to provide the physically-motivated f~-description.

Recently we have proposed [12,14,33] to distinguish three different fluctuation
(- ), mesoscopic (m-) and gaussian (g-) regimes in dependence on their finite-volume
scales chosen at the study of (V,V)-system. The respective scale of ranks (from the
complicated FT-EOS to its simplest variant) is:

:bf(T)p—cf(T)_af(T)p

zl 1 : (18)
Fr 1-b,(T)p kT
be(T)p—cr(T, T,
Z}?T_lz f( C)p Cf( C)_af( C)p’ (19)
1-bs(T;)p kT
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b 0
78, ~1=p| —L —T(aiJ , (20)
p

l—bfp oT

where B (T ,p) corresponds [37] exactly to the original vdW-EOS (17). Its introduc-
tion refines the definitions of Boyle’s parameters in comparison with Eqs.(6,7):

pB:p%—{T(é‘BO/@T)J , 1)

Ty /T:p%T(aBO /aT) . 22)
p
The smallest volumes are located in the range of locally-heterophase fluctua-

tions (f-regime) formed by two limits of volume. The lowest boundary is compatible
with the incompressible hard-core volume: ~d® of the FT-modified short-range
FT/LJ-potential [11, 14, 33] with three characteristic constants (&,6 > d, 7. — the cut-
off radius of direct interparticle attraction). The reduced value of latter (A=7./0)

normalized by either CP-dependent & from Eq.(11) or by p,-dependent o from
Eq.(12) is assumed to be f~independent. It forms the highest natural boundary of f-

regime: ~ rc3 . Any simulations of (¥, V)-system performed within the above bounda-
ries of volume V e (~ d 3,~ rg’ ) should be controllable by the most general FT-EOS

(18) with the known set of f, T-dependent coefficients (see [9-12]).

Its specific form of Eq.(19) for m-regime (its volumes are less than the correla-
tion volume 2?33 implies the persistence of gig-fluctuations. Thus the conventional ig-
asymptotic trend at (p—>0,P —>0) [35] is modified in the discussed f,m-regimes

where Z ;o —>1-c(T) or Zye —>1-cy (T,.), respectively. We emphasize, once

qig
more, that FT-model, in contrast to the other fluctuation methodologies in which only
one extensive quantity N or V' is fixed, studies and simulates the real single-phase f-
systems with the average density p= N /V . The posed aim is an investigation of the
field fluctuations 07,0 P without any attempts to use the basic ig-model of statistical

mechanics formulated for the system of material non-interacting point-particles [35]
(e—>0,6—>0). Its formal trend to the infinite isothermal compressibility:

leg = (ka)_1 = P! 5 o is obvious.
The classical WMG-phenomenology of a first-order phase transition introduces

the similar and unrealistic from our viewpoint locus of infinite values xT(p,T _)

termed spinodal [23]. Such a highly-model definition for a finite-volume (N, V)-
system at a given density leads to its inaccessibility by experiment [37]. Moreover,
itself y,-“indicator” of the fluctuation behavior can be formally excluded [12] from
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the statistical-mechanical system of equations written for the total pair H ( p,T ) - and
direct C ( p,T ) -correlation integrals [2,35]:
pC(p.T)
1-pC (p,T )
The spectacular similarity of Eq.(23) with the right-hand-side of vdW-EOS (18) tak-
en under the gig-constraint Z,;;7 =1 demonstrates unambiguously that the above-

—pH(p,T)=0. (23)

mentioned exclusion of an “extra”-root pC ( p,T ) at this condition well lead at p — 0
to the apparent congruous relation denoted below by the double arrow:

H(p,T)/C(p,T) =T /IT. (24)

It does not realized along the classical spinodal where: H p ( p,T ) — o due to its

definition. The refinement achieved by Eq.(22) becomes of great importance.
This observation was one of the main stimulus for FT-model [12] to introduce
the physically-realistic finite limits of action for correlation integrals (i.e. the total

correlation radius: F,( p,T’ ) for H ( p, T ) and the direct correlation radius of attraction
r, for C(p,T)). Hence, the implied FT-correction to the total correlation inte-
gral arisen due to the introduction of fluctuation coefficient ¢ o (T):

ap(T), _er(T)
kT p (1 ~by (T)p

has everywhere the finite value in the wide compressible f-regime even if the inequal-

ity & >r, 1s fulfilled. Respectively, the divergence of H pp (p,T ) can be realized only

Crr(pT)=bs(T) (@) Hpp(p.T)e )(b) (25)

in the singular CP (p = p,.,I' = 1) for which the limiting correlation radius tends
unquestionably to infinity: £. — 0.
Let us note that the p-dependent denominator of Eq.(25b) can be expressed [33]

in terms of the reduced pressure P/ le(g) too due to the interchangeable role of

p=p/ p% -and T=T/T g -variables along Zeno-line:

P oPo:%(_%}: T()Ll_];)} (26)
ppkTp pp\ pB) Tp T

This symmetric bifurcation of Zeno-variables noticed and discussed by many
authors (see, in particular, [16,17]) makes the proposed in [24] separability by Zeno-
line of the region of “soft” fluid from the region of “hard” fluid to be not enough in-
formative. It is interesting to note, in this context, that the proposed by Ben-Amotz

and Herschbach interpretation of pp in terms of C(7g) from Eq.(7) will lead to its
divergence C(Tg)=b/ [p(l — bp)] at p—0.
One should consider undoubtedly the other (F,Y_“ )— and (F,E) -projections at

the construction of CVL-diagram. Besides, the alternative dividing line located be-
tween f- and /-regions should avoid the evident crossing of the cs- and as-regions by
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the standard Zeno-line. This rather complicated problem is solvable, in principle, by
the non-classical FT-notion of an universal mi-boundary. 1t was introduced in the
frameworks of CVL-diagram by the unit relative compressibility line (i.e. not by the
unit compressibility factor line) related to the chosen unit: 7=V} /V, [12] of a fixed

2 ml
<(AN)I>:(XTJ :kT(ﬁp/aP) =1. (27)

(N), ).

This boundary of a metastable liquid (m/) is independent on the absolute value
of density p,,;. It corresponds to the achievable balance of gig-compressibility and

initial volume Vj):

ml-compressibility at any local density and local temperature from the total f~ranges
(p—0,pp) and (I' > 0,73 ), respectively. There are two possible strategies of its es-

timation. The first type corresponds to FT-EOS (19) with three constant T.-
dependent coefficients. They are determinative in the m-regime of mesoscopic vol-

umes located between ~ rc3 - and ~ §3 -limits: ~ rc3 <V <~ &3 (of course, if the respec-

tive difference (F,—rc) exists). It appears undoubtedly in the small near-critical re-

gion in which the density fluctuations of range longer than that of the intermolecular
attraction become significant. The second type relates to the much wider g-regime of

gaussian fluctuations in the macroscopic finite volumes: V >~ &3. It corresponds to

vdW-EOS (20) which is applicable, however, in accordance with GFA-principle [11]
to both g- and /-phases separately. Only in this g-regime as well as in its local realiza-
tions for a dilute g-phase and for a low-temperature /-phase by Eq.(15) the gig-
constraint: Z ;, =1 is fulfilled.

Conclusions. The proposed finite-range type of fluctuation potential provides
the promising tool for the simulation mesoscopic study of heterogeneous systems. In
the small vicinities of a critical point and coexistence curve the obtained by the
standard MD- or MC- simulations information can be, in principle, inaccurate or even
qualitatively distorted. The reason of both potential drawbacks is the possible misin-
terpretation of the simulated runs and properties. One assumes usually that the stand-
ard nano-scales of volume and the typical pico-scales of time concern to the average
properties of a macroscopic system. This assumption needs, however, the verification
in the above hardly testable by the direct experiment regions of a phase transition.
The ap plication of the classical binonal/spinonal concepts based on the gibbsian
strictly homogeneous phases becomes asymptotically questionable in the scales of
mesoscopicity. More accurately, the traditional mean-field VLE-diagram of equilib-
rium between the model coexistent infinite-volume/ infinite-lifetime phases of the
different but homogeneous densities and entropies is the highly model concept. The
physics of aerosol systems seems to be the appropriate field for the thorough verifica-
tion of the proposed fluctuation formalism.
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Pozankoe B. b., Pozankog O. B., Illéeuy M. B.
HcTouyHMK Me30CKONMUYECKUX, KPpUTHYECKUX U BoijIeBbIX CHHTYISIPHOCTEH
CHUMYJIMPOBAHHBIX (MJIYKTYAIHOHHBIM MOTEHIUAJIOM.

AHHOTALIMA

Ilpeonoocennas HeOasHo MemoOo02Uss KOHESPYIHMHOU NAP-HCUOKOCMHOU OUApammbl,
UCNOb308aHA OJisl NPEOCKA3AHUSL 8Ce20 UHMEPBAA PABHOBECUsL HCUOKOCMb-NAD 8 MeCmOo80OM
@oude-apeone. Memooonocus oCHOBAHA HA CHOPMYIUPOBAHHOM paHee NpuHyune 2100a1b-
HOU (IOUOHOU acuMMempuu, 8 KOMmopoM OMEEepeHYyma pacnpoCmMpaneHHds uoes eOuHo20
VpasHenusi coCmosiius, ooue2o 011 0beux, Kaxk noOKpUmu4eckou, maxk u HAOKPUmMuyeckou
obaacmetl cyujecmeoganus. B npomuononoicHocms 00b1UHOU NAP-HCUOKOCMHOU Ouazpam-
Me, JIOKATU308AHHOU MedHCOY KPUMUUECKOU MOYKOU U MPOUHOU MOYKOU, KOHSPYIHMHAS OUa-
2pamMma Oonucvléaem 3HayumenbHo Oonee WUPOKULL UHMePB8an (IIOUOHBIX COCMOSHULL, NpO-
cmuparowuics medxncoy 08yms 0bobwenHvimu moukamu boiia (npu ucuesarowe-manoi
NJIOMHOCMU NpU UcYe3arnuje-malol memnepamype), npeocKa3auHulll ¢ NOMOWbIO MoOelu
DryKmyayuoHHol mepmoOuHamMuKu. YcmanoseieHo Hogoe pacnonoxcerue, ¢opma u oopam-
HbIl 3HAK KPUBU3HBL O/ XAPAKMEPUCMUK Klaccudeckou cnunodanu. Hoeas epanuya mema-
CcmaduNbHOU HCUOKOCMU He NPOXOOUm yepe3 KPUMU4ecKyro mouky u moxcem 0bims onpeoe-
JIeHa 80 eceM uHmepaaie Gaouoa, BKUas e20 C8ePXKPUMUYECKYI0 YACb.

Knaccuueckuii, no ne coomeemcmeyowuii meopuu cpeone2o nois UCMOYHUK CUHSYIAPHO-
cmell Ha 0CHO8e 2100ANIbHOU acumMMempuu Modcem Oblmsb YCMAaHoseH 6e3 npugieyerus ge-
HoMeHnono2uu ckeununea. Tem ne menee, nonyuennvie OanHvle (YNioujeHue ¢ OKOJIOKpumuie-
CKOU obnacmu 3a8UcCUMOCMU MeMnepamypsvl om opmooapuyeckux NJI0OMHOCmell) coomeem-
cmeyom pe3yiomamam meopuu Kpumuueckou oonacmu. OcHosHbie uoeu 2ubcco8cKol meo-
puU pasHosecuti Mexncoy 08YMs UOeanU3UPOBAHHO-00OHOPOOHBIMU COCYUjecCmeyrowumu asa-
Mu oocmuzaem 8 dmot ooracmu npeoeia c8oel NPUMEHUMOCTU.

Knrouesvie cnoea: koHepysHmMHAS NAp-IHCUOKOCMHASA OUAZPAMMA, 2PAHUYA Memacmaou-
JILHOU HCUOKOCMU, 2]I00AIbHAS DAIOUOHAST ACCUMEMPUSL.
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Poczaunkoe B. b., Pozankoeg O. B., Illgeuv M. B.
Jl’epesio Me30CKONIYHUX, KPpUTHYHUX i BoiIeBUX CHHTYJISAPHOCTEH CUMY-
JbOBAHUX (IYKTYyaliHHUM MOTEHUiaI0M.

AHOTALIIS

3anpononosana HedagHo Memooo0n02is KOHSPYEeHMHOI nap-piouHHOI diazpamu, KA GUKOPU-
cmawna 01 nepedOayeHHss 6Cb020 IHMeEPBALy piBHO8A2U PIOUHA-NAP 8 Mecmosomy @ioiodi-
apeoni. Memo0onozis 3acno8ana Ha cghopmyib08aHOMY pariuie NPUHYuni 2100aibHoi ¢haroio-
HOU acumempii, y AKIll BIOKUHYMA NOWUPEHA 10es EOUHO20 PIBHAHHSA CMAHY, 3a2AbHO20, 5K
07151 NIOKpUMUYHIU, MAax i HAOKpuMuyHoi ooaacmi icnysauns. Ha npomunedxcuicmo 36uuatinii
nap-piounHiu oiazpami, AKa N0KANI308AHA MIHC KPUMUYHOIO MOYKOI0 | NOMPIHOI0 MOYKOIO,
KOHZpYyeHmHa diazpama OnuUcye 3HA4HO WUpuwull iHmepean GrioioHux cmamie, wo macHemscs
Midc 0soma y3azanbHenumu moykamu boiina (npu snukaroue-manoi 2ycmunu i npu 3HuKaroye-
manoi memnepamypi), nepedbauenoi 3a 00noMo2010 Mooei GryKmyayiuHoi mepmoOUHAMIKU.
Bcmanosneno nose posmautysanns, ghopma i 360pomuuti 3HaK KPUSUIHU OJIsL XAPAKMEPUCTIUK
Knacuynoi cninooani. Hosa mesca memacmadinbHoi piounu He npoxooums uepe3 KPUmudHy
MOYKY i MOdce Oymu 8U3HAYEHA 8 YCbOMY IHMeEP8ai (ioiody, 6KII0UAI0YU U020 HAOKPUMUYHY
uacmumy.

Knacuune, ane ne 6ionogione meopii cepeonbo2o nous 0xcepeno CUHSYIApHOCmel Ha OCHOBI
2n06anvHoi acumempii Modce Oymu 8CMAHOBNIeHO Oe3 3aNyueHHs (hDeHOMeHON02il CKellliHea.
IIpome, ompumani daui (cniowenuss y 6IU3bKO KpUMUYHOL 001aCmi 3a1eHCHOCMI memnepa-
mypu 6i0 opmooOapuyHoi 2ycmuHu) 8i0N08I0aArOMb pe3yibmamam meopii KpumudHoi oonacmi.
OcHosHi  i0dei  2ibcciBebKill  meopii  pieHogaz Midc 080MaA  10edni308aH0-00HOPIOHUMU
ichyrouumu azamu docseace 6 yiei 0b1acmi medvuci c80€i 3acmoco8HOCHI.

Kniwwuosi cnoea: xonwepyenmuna nap-piounuma oiazpama, medxca memacmaoiivHoi piouHu,
2nobanvHa huroiona acumempis.



