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We applied an advanced chaos-geometric approach to analysis, modeling, forecasting 

and processing the time series of the air pollutants (NO2) concentrations in an atmosphere of 
the industrial cities (regions). The approach includes such advanced non-linear analysis and 
a chaos theory methods such as a multifractal approach, correlation integral algorithm, the 
Lyapunov’s exponents and  Kolmogorov entropy analysis, a power spectrum analysis, predic-
tion models with neural networks blocks etc. The dynamical and topological invariants (in-
cluding the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension, Kolmogorov entropy 
etc) for the air pollutants (NO2) concentrations time series  in an atmosphere of the industrial 
cities are computed. Our study has shown an existence of a deterministic chaos in the atmos-
pheric pollutants fluctuations dynamics. It is presented an effective prediction model for de-
scription of the temporal evolutionary dynamics of the air pollutants concentration in atmos-
phere of the industrial city. 
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Introduction. In this paper we present an advanced version of the chaos-
geometric approach to analysis, processing and prediction of the scalar environmental 
measurement data, in particular, the time series of the  atmospheric pollutants (diox-
ide of nitrogen) concentrations in an atmosphere of the industrial cities. The studies 
concerning non-linear behaviour in the time series of nature dynamical systems are 
sparse, and their outcomes are ambiguous (c.g., [1-8]). In Refs. [8-15] it has been 
presented an advanced chaos-geometric approach to analysis, modeling, forecasting 
and processing the time series of the air pollutants concentrations in an atmosphere of 
the industrial cities (regions). The approach includes such advanced non-linear analy-
sis and a chaos theory methods such as a multifractal approach, correlation integral 
algorithm, the Lyapunov’s exponents (LE) and  Kolmogorov entropy (KE) analysis, a 
power spectrum analysis, prediction models with neural networks blocks etc. Here 
the results of computing the dynamical and topological invariants (including the 
Lyapunov’s exponents spectrum, Kaplan-Yorke dimension, KE etc) for the air pollu-
tants (NO2) concentrations time series  in an atmosphere of the industrial cities are 
listed.  It is presented an advanced prediction model for description of the temporal 
evolutionary dynamics of the air pollutants. 

The input data. Chaos-geometric approach.  In our study, we have used the 
nitrogen dioxide concentration data, namely, the multi year hourly concentrations, 
observed at several sites of the Odessa (one year total of 20x6570 data points) and 
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Gdansk (20x8760 data points) regions during 2001-2006 years. The typical time se-
ries of concentrations (in g/m3) of the NO2 are listed in fig.1 [8].  

Let us note that in the Gdansk region, the Agency of Regional Air  Quality 
Monitoring (Armaag) provides presently the 24-h forecasts of air quality levels using 
the  model called Calmet/Calpuff (see [1,8] and Refs. therein). In Refs. [8-12] it has 
been developed the computational code for studying chaotic features of the complex 
non-linear systems and in details described a procedure of testing of the  chaos ele-
ments in the corresponding time series. In Table 1 we present the block-scheme of a 
chaos-geometric approach in application to air pollutants dynamics.  

The detailed description of all blocks can be found in Refs. [5-12]. Below we are 

 
Fig. 1. The time series of concentrations ( g/m3) of the of the NO2 
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Table 1.  
A chaos-geometric approach to nonlinear analysis, modeling and prediction of 

atmospheric pollutants concentrations temporal and spatial dynamics 
I. Preliminary study and assessment of the presence of chaos: 

1. Test by Gottwald-Melbourne:  K  1 – chaos; 
2. Fourier decompositions, irregular nature of change – chaos; 

3. Spectral analysis, Energy spectra statistics, the Wigner distri-
bution, the spectrum of power, "Spectral rigidity"; 

 
II. The geometry of the phase space. Fractal Geometry: 

4. Computation time delay  using autocorrelation function or 
mutual information; 

5. Determining embedding dimension dE by the method of correlation 
dimension or algorithm of false nearest neighbouring points; 

6. Calculation multi-fractal spectra. Wavelet analysis; 
 

III. Prediction: 
7. Computing global Lyapynov dimensions LE:  ; Kaplan-York 

dimension dL, KE, average predictability measure Prmax; 
8. Determining the number of nearest neighbour points NN for the 

best prediction results; 
9. Nonlinear prediction. Neural network algorithm, algorithm opti-

mized trajectories. 
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limited only by the key aspects. As usually, we study the concentration data 
s(n)=s(t0+ n t) = s(n),where t0 is a start time, t is time step, and n is number of the 
measurements. The first fundamental step of modelling is in reconstruction of the 
corresponding phase space using as well as possible information contained in s(n). 
Using collection of time lags  to create a vector in d dimensions, y(n)= [s(n), s (n+ ), 
s(n + 2 ),..,s(n +(d 1) )],  the required coordinates are provided.  The dimension d is 
the embedding dimension, dE. The goal of the embedding dimension determination is 
to reconstruct a Euclidean space Rd large enough so that the set of points dA can be 
unfolded without ambiguity. From the mathematical viewpoint, this procedure results 
in set of d-dimensional vectors y(n) replacing scalar measurements. There  are  a few 
approaches to the choice of proper time lag [5-9]. This point is   important for the 
subsequent reconstruction of phase space.  First approach  is to compute the linear 
autocorrelation function CL( )  and to look for  that  time lag where CL( ) first passes 
through 0. The alternative approach is based on using method of an average mutual 
information. The correlation integral analysis is one of the widely used techniques to 
investigate the signatures of chaos in a time series. This method is based on using the 
correlation integral, C(r). As usually, if the corresponding time series is characterized 
by an attractor, then the correlation integral C(r) is related to the radius r as 

0

lim[log ( ) / log ]
r

N

d C r r , where d is correlation exponent. The saturation value of this 

exponent is defined as the correlation dimension (d2) of the attractor (c.g. [5-12]). 
Another method for determining dE is given by the method of false nearest 
neighbours. As a rule, the simultaneous application of two methods provides more 
exact determination dE.  The further important step in studying the chaotic time series 
is determination of predictability, which can be estimated by the KE. The KE is pro-
portional to a sum of the positive LE. The largest positive value of the LE determines 
some average prediction limit. Since the LE defined as asymptotic average rates, they 
are independent of the initial conditions. The estimate of the attractor dimension is 
provided by the conjecture dL and the LE are taken in descending order. The further 
development of the chaos-geometric approach was provided by development of new 
prediction models with standard interpolation methods (e.g., spline or polynomial) 
and neural networks blocks (all details are in refs. [11,13-16]). 

 
Some results and conclusion. In  Table 2 we present our advanced data on the 

parameters , K,  correlation dimension (d2),  embedding dimension (dE), two LE ( 1, 
2), Kaplan-York dimension (dL), and average limit of predictability (Prmax, hours), 

KE Kent  for time series of the NO2 at sites of the Odessa (2001) and Gdansk (2003) 
regions. If time lags determined by average mutual information are used, then algo-
rithm of false nearest neighbours provides dE = 6 for all air pollutants. From the table 
2 it can be noted that the Kaplan-Yorke dimensions, which are also the attractor di-
mensions, are smaller than the dimensions obtained by the algorithm of false nearest 
neighbours. It is very important to pay the attention on the presence of the two (from 
six) positive LE i . This fact suggests that the system broadens in the line of two 
axes and converges along four axes that in the six-dimensional space [8,9,13]. 
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Table 2.  
The correlation dimension (d2), embedding dimension (dE), first two Lyapunov’s  

exponents, E( 1, 2),  Kaplan-Yorke dimension (dL), and average limit of  
predictability (Prmax, hours) for time series of NO2 at the Odessa and Gdansk sites 

 

 d2 dE 1 2 dL Prmax Kent K 
Site 2 Odessa region (2001)  

8 5.29 6 0.0191 0.0050 3.92 42 0.024 0.70 
site 6 of Gdansk region (2003)  

9 5.31 6 0.0184 0.0061 4.11 40 0.025 0.68 
 

As example of using an approach to predict the time series, in Figure 2 we pre-
sent the empirical (solid line 1) and forecasting (solid line 2 and dotted line 3) data 
for the NO2 concentration for the last one hundred points (Gdansk region, 2003) [8].  
 

 
Fig. 2. The empirical (solid line 1) and forecasting (solid line 2 and dotted line 3) 

NO2 concentration lines for the last one hundred points (see text). 
 

The theoretical predicted data (solid line 2) are obtained with using the Schrei-
ber-type prediction algorithm with neural networks block and the theoretical data 
(dotted line 3) are obtained with using the standard Schreiber-type algorithm. In 
whole an analysis shows that almost all the peaks on the actual curve repeated on the 
prognostic difference between the forecast and the actual data in the event of high 
concentrations of the ingredients can be quite large. The prediction line 2 looks more 
exact in comparison with actual data.  In Table 3 we list the quantitative indictors of 
the forecast effectiveness. It can be seen that with decreasing predictability the qual-
ity of the forecast improves, that is, the results of the method are very similar to those 
that can be obtained by other methods. In order to check how well the model is built, 
it reflects the entire time series, a forecast was also made for 900 randomly selected 
terms. The success of the forecast turned out to be slightly improved (Table 3). 
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Table 3.  
Correlation coefficient (r) between actual and predictive series 

  and rms prediction error ( ) for different predictions  timeliness (NO2 ; two sites) for 
the last 100 raw points and 900 randomly chosen raw points 

 

 6h 12h 18h 24h  6h 12h 18h 24h 
Site 1; Last 100 points of a raw Site 1; 900 random points 

R 0.98 0.98 0.97 0.96 r 0.99 0.99 0.98 0.98 
 3.825 4.019 5.233 6.025  3.711 3.891 4.338 5.011 

Site 2; Last 100 points of a raw Site 2; 900 random points 
R 0.99 0.99 0.98 0.97 r 0.99 0.99 0.99 0.98 

 3.611 3.938 4.839 5.636  3.567 3.899 4.287 4.978 
 
To conclude, we have presented results of advances studying the temporal dy-

namics (time series) of the atmospheric pollutants (dioxide of nitrogen) concentration 
in atmosphere of the industrial cities using earlier developed chaos-geometric ap-
proach and new prediction models. To  reconstruct the corresponding attractor, the 
time delay and embedding dimension are determined. The LE spectrum, Kaplan-
Yorke dimension, KE etc are calculated. It is presented a new effective prediction 
model for description of the temporal dynamics of the air pollutants concentration. 
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