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Supercritical heterogeneous nanostructure of fluids.
Part 1. Diagram of fluctuation transitions in non-gibbsian phases

New concept of a supercritical fluid (SCF) region is proposed to recognize the set of the
recent experimental observations and the numerical model results, in which the conventional
asymptotic scaling theory and its crossover extension achieve the limit of applicability. An ex-
istence of the heterogeneous steady lattice-type nanostructure in the wide ranges of supercrit-
ical parameters termed the non-gibbsian fluid (NGF)-phase was hypothesized by one of au-
thors (V.B.R.) in the framework of FT (fluctuational thermodynamics)-model. It was argued
by FT-model that the similar NGF-phase exists also below the critical temperature in any real
finite-volume VLE-transition. The present work establishes the location of exact boundaries
for the supercritical lattice-type NGF-phase confirmed by the set of recently published expe-
rimental results and simulations. In brief, the total supercritical region consists of the dilute
gas-like (gl) gibbsian (homogeneous) phase (GPh) and the dense liquid-like (Il) gibbsian
(homogeneous) phase (GPh) separated one from another by the heterogeneous (at least, in
nanoscales of a finite volume) vapor-like (vl) NGF-phase. The practical usage of a such
structure may be quite promising in many areas of applications. It is certainly non-restricted
by only the known advances of a supercritical extraction processing.

Keywords: supercritical fluid, heterogeneous (non-gibbsian) phases, model of fluctuational ther-
modynamics.

1. Introduction. There are several interesting evidences [1-8] that the certain
global segment of the supercritical fluid (SCF) region in a pure substance phase dia-
gram might be the steady heterogeneous by its physical nature, at least, in the nanos-
cales of volume. From the phenomenon of near-critical opalescence described by the
gaussian Ornstein-Zernike theory one may suppose the existence of its extension in
the wider range f-states. Such a non-gibbsisan bi- or tri-modal type of SCF-behavior
can be termed the region of a higher order (second) fluctuation phase transition
(FT2) to distinct it from the deterministic notion of a second order phase transition
PhT2. It should be segregated by two specific boundaries from the region of gibbsian
phases (GPh). The different attempts of the similar specification have been proposed.
As a rule, the known Widom's line is involved by the adepts of the crossover trans-
formation [1, 2] developed to extend the applicability of an asymptotic scaling theory
to the wide CP (critical point)-vicinity. In this case, the complementary role of the
critical isochore as the second boundary of SCF-peculiarities is usually adopted.
Another example of a such construction is two coupled lines of the excluded volume
(EV-) and the available volume (AV-) percolation transitions hypothesized recently
in the SCF-region by Woodcock [3]. This author has rejected even the itself existence
of a singular classical CP for the first-order phase transition (PhT1) (gas-liquid) re-
lated conventionally to the type of second-order (PhT2)-states. Authors [4] have gone
far beyond the equilibrium concept of a general phase diagram. They postulated the
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existence of substances without any presence of a gas phase (ionic liquids or poly-
mers, for example) as well as those (simple and/or complex fluids) in which the tradi-
tional vapor-liquid equilibrium (VLE) exists with an exact CP-location. In both cases
the specific dynamical Frenkel’s line has been predicted up to the extreme pressures,
mainly by the Lennard-Jones’ (LJ)-fluid simulations. It divides the whole fluid region
onto the subregions of two liquid phases (I and II) with the essential distinctions in a
dynamical liquid-type structure. This set of revelations can be added to the direct
MD-observation of the heterogeneous density distributions in the widely extended
“compressible” [5] SCF-region relevant to the processes of supercritical extraction.

The common feature of above works [1-5] is the adoption of deterministic VLE-
transition which should be supposedly described below CP (if it exists, of course [4])
only by the unified for both coexistent phases EOS. This concept originated by van
der Waals (vdW) himself fails, completely, at the description of any heterogeneous
states such as saturated, moist or overheated vapor, for example. Nevertheless, it is
implied by all aforementioned works, which indicate themselves, in fact, the reality
of heterogeneous (non-gibbsian) SCF-structures and lattice-type fluctuations.

The aim of present work is to explain a possibility of the alternative approach to
the SCF-description and to its promising usage stimulated by the FT (fluctuational
thermodynamics) model [6-9]. It rejects, at the start of SCF-consideration, the widely
spread classical vdW-concept of a unified EOS, which leads, exclusively, to the no-
tion of a single homogeneous (gibbsian) SCF-phase. At the same time, the cubic form
of the 3-coefficient modified vdW-EOS termed FT-EOS [6] may be applied, sepa-
rately, to the both hypothesized here GPh-regions of supercritical gas-l/ike (g/) and
liquid-like (Il) behavior with two different sets of above coefficients. The present
work 1s formed by two parts. Our goal below is to demonstrate the highly probable
existence of a heterogeneous SCF-region (i.e. FT2) located between these about ho-
mogeneous g/- and //-phases. Another goal is to discuss, in brief, the promising pers-
pectives of its practical application arising due to the unique thermophysical proper-
ties observable in this region.

In Section 2 of this part the main features of the proposed global congruent fluc-
tuation FT-diagram of a pure fluid extrapolated in SCF-region are represented. The
simple methodology of the vdW-geometric contours has been used to specify approx-
imately the external boundaries of FT2. The comparison with the results reported by
other authors for LJ-fluid corroborates, in general (Section 3), the discussed here con-
figuration of FT2-region. We represented our conclusions in Section 4. The funda-
mental role of vdW-fluid as the adequate reference physical model of SCF-region for
real fluids has been elucidated.

2. Global congruent fluctuation diagram of vdW/LJ-fluid and location of
FT2 in SCF-region.

2.1. Terminology and main definitions. The known classification of phase
transitions (PhTs) proposed by Ehrenfest long ago separates the first from second or-
der in the context of gibbsian homogeneous phases (GPh). The discontinuity of mass
density and caloric densities along the coexistence curve (CXC) indicates the first-
order phase transition (PhT1) while the smooth disappearance of such distinction
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leads to the van der Waals (vdW)-Andrews definition of a classical CP. It is conven-
tionally related to the second-order phase transition (PhT2) but, more accurately, the
coupled discontinuity (divergence) of the isothermal compressibility B and isobaric

heat capacity Cp has to arise as its main sign. It is easily to demonstrate [3, 6] that the
famous Gibbs’ phase rule fails locally at CP just due to the above classical CP-
definition derived by van der Waals from his main concept of a fluid (f) continuity. It
implies the continuous transformation of local density at any temperature within the
interface layer between two coexistent stable GPhs of gas (g) and liquid (/). Their
metastable continuation is also admissible. The real steady vi-states located within the
spinodal are described by the classical VLE-theory as unstable ones.

We have used in this work the alternative notations of FT-model [6-9]: FTI in-
stead of PhT1 as well as FT2 instead of PhT2 (its presence as a NGF-phase in SCF-
region has been earlier hypothesized). The aim is to emphasize their principle differ-
ence, since both FT-ones: FT1 and FT2 admit the existence of heterogeneous fluctua-
tional NGF-phases at both sub- and supercritical states. Below T.., the presence of a

such subcritical NGF-phase termed the inferphase was confirmed for many sub-
stances by our previous investigations [8, 9, 17, 18]. We have used for its presence
the term of congruent vapor-liquid (CVL)-diagram to distinct it from the traditional
VLE-diagram constructed, exclusively, for GPhs i.e. the gibbsian infinite-volume
phases. The similar result above 7, follows directly from the main concept of FT-

model [6, 7] developed to study all types of a fluid state in a finite volume. This ap-
proach is different from the well-known proposed by Fisher techniques of the finite-
size scaling. The latter method is directed, mainly, to include the finite-volume ef-
fects in the methodology of an asymptotic CP-vicinity. In the framework of FT-
model, one should suppose that the classical mean-field results of the fluid theory for
gibbsian phases become applicable only at the thermodynamic infinite-volume limit
of the statistical mechanics. In any real, i.e. finite-volume f-system a possibility of the
heterogeneous fluctuations exists. Hence, it has to be taken into account, especially,
in the regions of deterministic PhTs.

As a result of above arguments the traditional binodal locus of VLE-diagram is
not shown in Figs. 1-3 where two other PhT-lines of sublimation and fusion are also
absent. To provide the full view of hypothesized FT2-region we have represented it

by three (TC,(D) - (n,r)- and (7:,0)) -projections together with the other known con-

tours. One can consider the reported below results as an attempt to construct the
global congruent fluctuation FT-diagram on the base of combined thermal and calor-
ic EOSs but without any appeals to the strictly equilibrium Helmholtz’s and/or Gibbs’
thermodynamic potentials.

For the convenience of readers, the used conditions of contours are recollected
in Table 1 for all six comparable lines. They were applied here to the reference re-
duced PCS (principle of corresponding states)-form of vdW-EOS to found the basis
for the further corrections in terms of FT-EOS [6-9]. The simplest vdW-form is dis-
cussable, as a rule, by a variety of authors as an example of the mean-field criticality.
We claim now that this viewpoint is rather elusive. It is completely based on the
adopted analytic asymptotic expansion of vdW-EOS. This procedure is, however, not
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Fig. 1. Pressure-density (n,(D) -projection of FT2-region (shown by decorated lattice)

represented in terms of reduced variables: m=P/ P., ®=p/p, for a real fluid (see
Table 1 and text for its explanation)
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Fig. 2. Pressure-temperature (TC,T) -projection of FT2-region (shown by decorated lat-

tice) represented in terms of reduced variables: =P/ P., 1=1 /1T, for a real fluid
(see Table 1 and text for its explanation)
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Fig. 3. Temperature-density (’C, (D) -projection of FT2-region (shown by decorated lat-

tice) represented in terms of reduced variables: 1=7/1., ®=p/p, for a real fluid
(see Table 1 and text for its explanation)

applicable just in the vicinity of actual CP. Hence, the known set of so-called classic-
al critical indices: a,=0; B,=1/2; y,=1; &, =3 has nothing in common, strictly
speaking, with the vdW-EOS itself. Besides, this famous PCS-form describes by its
subcritical part of critical isotherm t=1 the actual g-branch of CXC for many sub-
stances within the experimental uncertainty [6-9]. To illustrate such a striking vdW-
feature of critical isotherm at 1<1 we have shown it by the bold dashed curve to-
gether with the rest supercritical part of t=1-curve at t>1 on the single (n,(o) -

projection.

2.2. Contours for definition of FT2-region in SCF-area. We start the discus-
sion from the most usable in the heat energetics, for example, projection (TC,(D). It

contains in Fig. 1 six lines termed (see Table 1) by us: 1) quasispinodal (qsp); 2) me-
tastable liquid (ml) boundary; 3) inversion curve (inv); 4) Zeno-line (ZL); 5) spinodal
(sp); 6) contour of gaussian fluctuations (A). They form three characteristic pairs of
coupled contours: gsp/ml, ZL/inv, sp/A. First one 1.e. gsp/ml segregates FT2-region of
NGF-phase depicted by the decorated lattice. Its lower boundary (gsp) has been often
discussed as the smooth continuation in SCF-area of the special ridge for the contours
of constant gaussian A-fluctuations [11, 12, 19, 20]. Another its plausible interpreta-
tion 1s provided by the known Widom's line with the expressible maxima of second
derivatives B,, C,, o, (isobaric expansion) following from the chemical potential

u(T ,P) alongside the gsp-line. This interpretation is not completely consistent, how-

ever, [4] with the available near-critical experiment on C, (n, co) -dependence, since it
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demonstrates the locus of maxima sooner alongside the critical isochore w=1.

The upper boundary of FT2-region i.e. m/-contour was introduced by FT-model.
It is crucial characteristic contour to confirm the important concept of a metastable //-
phase existing not only below 7, but, also, above it. In the certain meaning, m/-

boundary of FT-model is the realization of the brilliant Bernal’s idea [3, 20]. It is re-
lated to the hypothesized wide-range metastability of liquid existing up to the gi/-
phase states of a vanishing density @ — 0 too. Let us note also the evident common
geometric similarity of two other characteristic pairs (ZL/inv- and sp/A-) of contours.

This is observable only in(n,m) -projection composed of the mechanical quantities.

All six curves demonstrate in this case the domelike shape with the “pseudo-critical
maximum’” at the respective top-points.
This total similarity fails only for the classical sp/A-pair of gaussian contours in

the next (TC,’E)- and, especially, (7:,03) -projection (Figs. 2,3). The closed loop of the

chosen here, by chance, A=2-contour (A =1-contour corresponds to the unrealistic
ideal-gas EOS-model) 1s degenerated into a singular vdW-Andrews CP at the top of

classical sp-contour on the (n,r) -plane. Such shape of CP-degeneracy is the common

feature of any other gaussian A-contour at its trend to A — oo . Just this simple obser-
vation provides, to our mind, the basis for the crossover expansion of any asymptotic
nonclassical criticality [1, 2]. The particular phenomenological modification of vdW-
EOS in the framework of the gaussian-contours (see below Fig. 5) approach was pro-
posed long ago by Fox [10] to include the configurational heat capacity.

FT-model’s pair of FT2-boundaries (gsp/ml) is qualitatively different from the

above-discussed gaussian sp/A-pair of FT1 not only in the (TC,’E) -plane (Fig. 2) but

also in the (r, (D) -plane (Fig. 3). The presence of non-mechanical thermal variable 7 is

here crucial. The latter is the widely discussable in the context of ZL-contour [13-16].
The used long ago by Nedostup [15] concept of the so-called ideal curves was ex-
tended, then, by Ben-Amotz and Hershbach [13] as well as by other authors, in par-
ticular [14, 16], for the CP-predictive aims. We represented ZL-contour of the pseu-

do-ideal-gas behavior (Z ‘g 1) as well as the inversion curve (inv) with the sign of

its effect (A = 0) in Figs. 1-3 only for information of a reader. These curves intersect
on all projections and their impact on the predicted global congruent FT-diagram
with the supposed presence of NGF-phase is negligible. The only non-trivial thing, in
this context, for vdW-fluid is the consideration of both Boyle’s points:

T, = (a/bR)- and pi" = (1/b)-vicinities, namely, in the (m,7)- and (t,0)-
planes. It seems that the widespread belief in the crucial role of the second virial
coefficient B(7) at T — T, can be, at least, called in question if one takes into account
our results represented in Figs.2,3 [17] at the respective density limit @ — 0.

3. Comparison with the relevant SCF-investigations.

3.1. Simulated pro and con of NGF-existence in SCF-area. Let us note that it
is impossible to discuss a variety of published relevant articles on SCF-problems ([ 1-
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23] and many others) in any detail within this brief Section. However, their authors
(we refer interested readers for detailed discussions to the list of cited works) have
adopted, except for some exclusions [3, 5, 8], the orthodox vdW-Andrews concept of
a supercritical behavior. Accordingly to it, one should consider above 7, and/or P,

C

only a single gibbsian phase (GPh) in which the supposedly continuous transforma-
tion of gl/-states into /l-states and vice versa is possible along the supercritical iso-
therms and/or isobars. FT-diagram demonstrates (Section 2) that in a finite-volume f-
system such a mean-field possibility is the highly idealized assumption in the wide
ranges of (P,T)-parameters. We introduced the imaginable decorated lattice for the
illustrative goal to emphasize the virtual heterogeneous structure of NGF-phase. It is
formed, in accordance with FT-model, by two coupled percolation transitions de-
picted by black for //-states and by grey for g/-states lattices. The white “voids” cor-
respond to the about “empty” ig-states located inside of NGF-structure.

It 1s naturally to compare our construction with those for the heterogeneous
SCF-states shown in Fig. 4ab and simulated by Woodcock [3] as the meso-states. Our
interpretation of NGF- and ///g/-states in Figs. 1-3 is the quite different from that pro-
posed for the range located between upper and lower boundaries of AV- and EV-
states, respectively, in [3]. The latter implies the crucial influence of a solid (s) mole-
cular core on the f~behavior of vdW/LJ-systems. The standard vdW-terminology sup-
poses namely a combination of “empty” (available) volumes (v-b) as well as of hard
(excluded) volumes b in any f-state of vdW-fluid. This physically plausible concept
1s, however, too restrictive to imitate the heterogeneous phases. The overestimated
role either of the only short-range attractive interactions in the asymptotic CP-vicinity
[1, 2] or the only singular very short-range hard- (or soft-) core repulsions in the
mean-field area of a triple point [3,4] is the typical feature of many SCF-
investigations. Namely it leads, from our viewpoint, to the made-up contradiction be-
tween the scaling and classical PCS-theories of CP-vicinity and, even, to the “revolu-
tionary” rejection from the CP-existence in the vdW-Andrews meaning [3]. In partic-
ular, we refer here the interested reader to the exciting polemics about itself CP-
existence arisen recently between the adepts of the scaling theory [1, 2] and Wood-
cock [3] (he reported it in the open access journals). The latter author carried out the
enormous set of SCF-investigations based on the comparison of the very accurate but
still unified NIST-EOS of Ar, CO,, H,O with the set of the relatively simple molecu-
lar model’s simulations (hard-spheres, square-well, augmented vdW, LJ-fluids) “to
argue” the absence of a vdW-Andrews’ CP. This fictitious concept is not completely
novel because yet Michels et al [22] discussed its reality long ago in the well-known
experimental work of 1936 on the criticality and CXC-properties of CO,.

On the other side, it is remarkable, to our mind, result that the congruent FT-
diagram (Section 2) based here on vdW-EOS corroborates by Figs. 1,2, at least, qua-
litatively, all bound-shapes reported in [3] (see Fig. 4) for the so-called putative
phase-diagram with the special region of mesophase (in terminology proposed by
Woodcock). This result has been obtained in the present work for Ar, CO,, H,O and
any other f-system without appeals to an absence of a singular CP. Moreover, the
well-studied experimentally and reliably approximated by the fundamental NIST-
EOS real SCF-systems are adequately described in the present work by PCS-form of
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Fig. 4. Scheme of mesophase [3] based on the fundamental NIST-EOS for argon in

the (P,p)- and (P, T)-plane (in logarithmic coordinates) represented here for compari-
son with the predicted FT2-region in Figs. 1 and 2, respectively

Egs.(1-9) from Table 1. They were derived for the simplest supposedly mean-field
vdW-EOS (!). It describes adequately at the condition t=1 [7] the whole g-branch of
Ar, CO,, H,O, ... (see the bold dashed curve at ©<1 in Fig. 1):
8
7 = 2 32 (10)
3-o
Its known drawbacks are, of course, the universal and unrealistic values of two
coupled vdW-criteria of similarity: Zg =3/8, Ri’ =4 for all f-systems which need

the revision. Let us note, in addition, that the logarithmic scales of P and T coordi-

nates (Fig. 4b) used in [3] are the distorting factors which prevent from the more de-
tailed comparison of Figs. 1,2 and Fig. 4ab.

3.2. Can NGF-concept be trusted for real SCFs - ? FT-EOS introduces the
variant of vdW-EOS revision [6-8] for SCF-region performed in terms of two actual

substance-dependent PCS-criteria [8, 18]: the crit-ical compressibility factor Z, and
the critical Riedel’s factor Ri, :
o Ri’*to , 5
= < —(Ri, -1)o". 11
2(Ri, —1)—(Ri,-2)o (Ri. =1) (I
The substitution of vdW-value Ri’ =4 transforms Eq.(11) into the original form

of Eq.(10) but the respective transformations of gaussian 4-fluctuations seems here to
be even the more informative [8]:

AP _(&N) = (8(0)” ~ tA(Ri,o)

. 2Z(Ri,-1)| Riit— A(Ri,,0)0 |’ (12

N  z\on

where (see also Eq.(11)):

A(Ri,0)=[2(Ri, ~1)~(Ri,~2)o] . (13)
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It becomes the equality: A(Ric,cozl) =Ri’ along the actual critical isochore.
Hence, FT-EOS (11-13) provides the asymptotic gaussian SCF-divergence in the vi-
cinity of actual CP ((’% =Lt—>1, = 1) and explains the phenomenon of near-critical

opalescence:
T T

- = ) 14
2Z (R —1)(i—1) 2Z.(Ri 17T, ”
For comparison, Sengers and co-authors [2] had applied, as the first step of the
crossover vdW-transformation the classical (c/) gaussian fluctuation contribution to

A" (T,p,)

the isothermal compressibility 3, (T ,p(c)) calculated along the mean-field isochore:

p, = pg of Eq.(9) (see Table 1):

C(T,p’
ACI(T,pS)EpSkTBT=6;0{1+ vzgc Zpo )J.TZTT' (15)
c 8% c

Then, the “shifted” critical temperature to its actual value: (Tc —TCO)/ T’ was

used by the field variant of RG-theory. The aim had been to obtain the prescribed
nonclassical exponent for compressibility (y >y, =1) by the involvement of the ac-

tual Z_.-value instead of Zg =3/8 from Eq.(15).
Another phenomenological attempt to convert vdW-EOS so as to incorporate the
Ising-like criticality was performed by Fox [10]:
3tm 30’
F
T o= — . 16
(3-0)z, (1o
This vdW-modification of a unified EOS provides the rather realistic estimates
of the Riedel’s substance-dependent PCS-criterion of similarity at the actual CP

(0, =Lt>1):
. 3( 1 1

Comparison of the contours from [10] in the (n,r)— and (r,co) -planes with the A-

contour A=2 depicted in Figs. 2, 3 shows, however, the gaussian nature of such
vdW-modification.
The equation derived long ago by Levanyuk for PhT2 in s-phases and used by

Sengers and co-authors [2] for SCF supposes the divergence of CV(T ,p(c’) with the

gaussian exponent oo =1/2 too:

CV(T,pS):C(Zf,...)[T_TTCOJ , (18)

where the dimensional amplitude C (Zf,) is irrelevant for our discussion. Fig. 5

taken from [8] represents the detailed comparison of macro- and mesoscopic gaussian
fluctuations of density. It confirms the concept of heterogeneous fluctuations existing
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in SCF-area. The respective A-contour was earlier called the pseudospinodal curve

[8].
FT-model provides also the following system of two gaussian approximations
for heat capacities along the actual p, at t2>1:

CP(T,pC):c;;g[LH] (a) CV(T,pC):c;g[ : m+1j (). (19)
: (x-1)

The index ig corresponds to the ig-model in which i-degrees of molecular freedom:
Cg =(i/2+1)k,, C¥=(i/2)k,. These results are written for the simple approx-

imate caloric EOSs based on the knowledge of CP(P,T ) -values for enthalpy 4 and

of C, (T , p) -values for internal energy e:
W(T.P)=e(T.p)+P/p—h*(T,P*—0)=e*(T.p* >0)+k,T. (20)
It was interesting to compare in the (T ,p) -plane of Fig. 3 the about linear con-

tour for vdW-fluid 4 (T,P)~e*(T)+ P /p with that predicted by Nedostup [15]

and simulated by Desgranges and co-authors [14] for the LJ-fluid (including the addi-
tional electrostatic interactions adopted between the point-atom charges). While such
comparison (it is not shown in Fig. 3) is only of passing interest for the main here
discussion of FT-diagram, its results confirm qualitatively the thermodynamic consis-
tency not only of FT-EOS (11) but also of vdW-EOS (10) itself up to the actual CP.

The comparison of A" -contours following from Eqs.(12-14) and represented in
Fig. 5 (taken for C,H,, CO,, C¢Hg, H,O from [8]) with those calculated by Nishikawa
etal [11,12] for vdW-fluid:

2
A _ 41(3- o)
361 —9w(3— (o)2
seems to be also rather informative. Only the formers predict the supercritical diver-

1)

gence of gaussian fluctuation located between the actual 7.- and vdW T, CO -values
(see also the crossover approach of Eq.(15) developed in [2]). We termed earlier the

A" -contours as pseudospinodal (psp) [8] since the similar divergence of gaussian
fluctuations of density is observable alongside the classical sp-contour at 7'<T,
shown in Figs. 1-3. At the same time gsp- and m/-contours of FT2-region demon-
strate the qualitatively different shape in comparison with the gaussian A" -contours
(Table 1). Namely, these curves segregate the wide segment of SCF-plane identified
by FT-diagram as the NGF-phase and FT-2 region, respectively. Taking into account
their crucial role for the substance-dependent calculations, we represented below the

FT-refinement of m/-contour Eq.(2) for vdW-fluid just in the (r, (D) -plane:

187, (1-Z,0)°

22
2-Z.o 22)

Tl =

23
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It seems that the revealed so point of intersection between the (not shown in Fig.
3) saturated [-branch p; (T ) (see Fig.5) and this universal FT-boundary of a /iquid

metastability was the main cause for “rejecting” of a singular CP-existence in [3].
Two asymptotic trends following from Eq.(23) are obvious [17]:
p,(T—>0)=p,/Z  (a) T,(p—>0)=9T.Z,  (b). (23)

They are widely discussible in the predictive ZL-methodology [13,16,18].

4. Conclusions. The notions of global FT-diagram including FT1- and FT2-
regions of NGF-phase represented by Figs. 1-3 can be quite useful to develop the ad-
vanced combined theory of SCF. FT-diagram provides the fluctuation insight into the
conventional PhT1- and PhT2-concepts and their idealized spatial structures too. In
particular, both subcritical (FT1) and supercritical (FT2) regions are two-dimensional

manifolds on the planes of all measurable volumetric PVT-variables: (P,p) , (P,T )
and (T ,p). This distinction from PhT1-model is especially notable in the (P,T )-
plane where NGF-interphase is bounded [7-9] by two bubble B, (T) and dew Fy;(T)

curves instead of a single deterministic vapor pressure curve PV(T ) implied by the

classical VLE-theory. Both above curves cross one another at the actual singular CP
in which the gibbsian phase rule is, of course, fulfilled.

It is interesting to note that some authors [19] have used even the rather con-
troversial interpretation of the standard equilibrium abbreviation PVT (physical-vapor
transport) to emphasize the hypothesized dynamical nature of criticality. The aim
was to develop the “revised” dynamical version of vdW-EOS for the vicinity of vdW-
Andrews CP in which one a priori adopts the adequacy of the equilibrium chemical

potential M(T ,P). Simultaneously, this approach admits the reality of an Euler-
Lagrange time-dependent equation for both conjugated densities of mass p(T ,P;t)

and entropy G(T , P;t) = p(T , P;t)s interconnected by the differential thermodynamic

Gibbs-Duhem identity for the First Law:
dP=pdu+odT. (24)
The list of references cited in [19] shows that T.Ma and S.Wang had published,
for the first time, their dynamical vdW-EOS’ “version™ at 2008. In particular, they

introduced the combined density/entropy order parameter u :(p—pO,G—GO) in

their PVT-abbreviated dynamical model. They supposed in conclusion the existence
of general asymmetry principle of fluctuations and PhT3-reality.

We inform a reader that the similar concepts were developed by one of us
(V.B.R)) in detail about twenty years earlier (see, for example, [23] and its list of
cited works). Besides, the essential but slightly changed notions used by Ma and
Wang such as the order-disorder parameter and global fluid asymmetry may be easi-
ly found in the cited here works of FT-model [6-9]. In any case, it seems to be worth-
while to compare the final conclusions of aforementioned authors [19] with those re-
ported in the present work.
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Macro- and mesoscopic fluctnations of
=

50 1_%0 250 350 200 300 400 500 600 700
Density p (kg/m?) Density p (kg/m*)

Macro- and mesoscopic fluctuations of

100 200 300 400 500 100 200 300 400 500
Density p (kg/m?) Density p (kg/m?)

Fig. 5. Comparison of isothermal gaussian (macroscopic) and non-gaussian (mesoscop-
ic) fluctuations predicted by FT-EOS [8] for Z., Ri. (solid lines) with SAXS-
experimental data (points) obtained by Nishikawa et al [11,12] and described by vdW-

EOS [10] in which Zg =3/8 and Rig =4 . The locus of SAXS-ridge in [11,12] coin-
cides, practically, with the supercritical /-branch of FT-EOS (see Conclusion)

25
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To our mind, the attempt to expand the Ehrenfest classification of PhTs into
SCF-region by the steps: 1) “the gas-liquid coexistence-curve can be extended
beyond the Andrews critical point and 2) the transition is first order before the criti-
cal point, second order at the critical point, and the third order beyond the Andrews
critical point” is, in general, erroneous due to its non-thermodynamic nature. Both

thermodynamic potentials: f (T ,v) and u(T ,P) termed the Helmholtz’s and Gibbs’

free energies, respectively, are not applicable, strictly speaking to the description of
any non-equilibrium states. Macroscopic fluctuation thermodynamics of a finite-
volume [23] has to operate under the Second Law constraint, which requires only the
positive values of heat capacities: Cp =C,, >0 and compressibilities By =, >0 at

any temperatures. This requirement excludes, as a matter of fact, from the conven-
tional equilibrium PhT-theory such anomalous vdW-area of PhT1 with the negative
compressibility as the spinodal decomposition segment located between two branches
of sp-contour in Figs. 1-3. From this viewpoint, the reference in [19] to the work of
Nishikawa et al [11,12] on the vdW-ridge in SCF-region (see its discussion in Section
3 and Fig. 5 for comparison with FT-model) is not convincing. One should not con-
sider such ridge as the “experimental discovery” which “seems to the locus of a high-
er-order phase transition”. Moreover, any explicit (i.e. model-dependent) calculations

of the third-order derivative with respect to the temperature (i.e. [8(7 p/OT ]p ) of the
(8

Gibbs’ energy u(P,T ) cannot be pro or con proof of the PhT3-existence.

By contrast, FT-diagram identifies the above fluctuation ridge with gsp-contour,
i.e. the lower boundary of NGF-phase. Its upper boundary, i1.e. m/-contour separates
the heterogeneous FT2-region from the metastable super- and subcritical /-phase. The
structure of latter is evidently about homogeneous, i.e. gibbsian GPh’s one. Below
1., namely, FT-boundary of Eqs.(22,23) predicts with the reasonable accuracy the

most reliable experimental data on a liquid metastability [20,21]. The main tool for its
description in term of FT2-region is the reference model of vdW-fluid (Table 1) re-
fined by FT-EOS (11-13). It is highly desirable to corroborate and confirm the re-
ported here FT-estimates by the controllable relevant simulations of mesoscopic (na-
no-) volumes. The implied possibility of superposition of the a priori unknown global
congruent PhT-diagram (with its g-, /-, s-GPhs-regions and the respective NGF-
regions) on the predicted here FT-diagram seems to be quite promising and challeng-
ing problem for the further investigations.

The title of the fundamental Gibbs> work published 140 years ago was “About
equilibrium of heterogeneous substances”. The conventional notion of GPh comple-
mented by the concept of NGF-existence provides the new insight into the “old”
problem of VLE-transition occurred in the finite-volume real f~systems.

References:
1. Levelt Sengers J.M.H.Critical behavior of fluids: concept and applications, in Super-
critical Fluids, E.Kiran and J.M.H.Levelt Sengers (eds.), (1994) US Government
(Printed in the Netherlands) — P. 3-38.

26



®dizuka aepoaucnepcHux cucrem. —2019. — Ne 56. — C. 14-29

2. Kostrowizka-Wyczalkowska A.K., Sengers J.V., Anisimov M.A. Critical fluctuations
and the equation of state of van der Waals // Physica A. —2004. — Vol. 334— P. 482-
511.

3. Woodcock L.V. Thermodynamics of criticality: percolation loci, mesophases and a
critical dividing line in binary-liquid and liquid-gas equilibria // Journal of Modern
Physics 7. —2016. — P. 760-773.

4. Brazhkin V. V., Fomin Yu. D., Lyapin A. G., Ryzhov V. N., Trachenko K. Two liquid
states of matter. A dynamical line on a phase diagram // Phys.Rev.E. — 2012. — Vol.
85.—P. 1-17.

5. Goodyear G., Maddox M. W., Tucker S. Correlation between local and long-range
structure in compressible supercritical Lennard-Jones fluids: state-point dependence
//"J. Phys. Chem. — 2000. — Vol. 104 B. — P. 6258-6265

6. Rogankov V. B., Boshkov L . Z. Gibbs solution of the van der Waals-Maxwell prob-
lem and universality of the liquid-gas coexistence curve // Phys. Chem. Chem. Phys.
—2002. - Vol. 4. —P. 873-878.

7. Rogankov V. B., Levchenko V. I. Global asymmetry of fluids and local singularity in
the diameter of the coexistence curve // Phys. Rev. E. —2013. — Vol. 87.—P. 1-24.

8. Rogankov V. B. Fluctuational-thermodynamic interpretation of small angle X-ray
scattering experiments in supercritical fluids // Fluid Phase Equilibria 383. — 2014. —
P. 115-125.

9. Rogankov Jr. O. V., Mazur V. A., Shvets M. V.and Rogankov V. B. Re-established
congruent vapor-liquid diagram of alkali fluid metals as alternative to crossover
VLE-interpretation // Fluid Phase Equilibria 466. —2018. -— P. 79-88.

10. Fox J. R. Method for construction of nonclassical equation of state // Fluid Phase
Equilibria. —1983. — Vol. 14. — P. 45-53.

11. Nishikawa K., Morita T. Fluid behavior at supercritical states studied by small-angle
X-ray scattering // J. of Supercritical Fluids. — 1998. — Vol. 13. —P. 143-148.

12. Nishikawa K., Kusano K., Arai A.A. Density fluctuations of a van der Waals fluid in
supercritical state // J. Chem. Phys. —2003. — Vol. 118. — P. 1341-1346.

13. Ben-Amotz D., Herschbach D.R. Correlation of Zeno (Z=1) line for supercritical flu-
1ds with vapor-liquid rectilinear diameters // Israel J. of Chemistry (online). — 1996. —
Vol. 30.P. 1-2.

14. Desgranges C., Margo A., Delhommelle J. Ideality contours and thermodynamic re-
gularities in supercritical molecular fluids // Chem. Phys. Lett. — 2016. — Vol. 658. —
P. 37-42.

15. Nedostup V. I. Classical ideal curves in the phase diagram for simple substances //
High Temperature. — 2015. — Vol. 53. - P. 62-67.

16. Apfelbaum E. M., Vorob'ev V. S. and Martynov G. A. Triangle of liquid—gas states //
J. Phys. Chem. B110. —2006. — P. 8474-8480.

17. Rogankov O. V., Rogankov V. B. Can the Boyle's and critical parameters be unambi-
guously correlated for polar and associating fluids, liquid metals, ionic liquids? //
Fluid Phase Equilibria. — 2017. — Vol. 434. — P.200-210.

18. Rogankov O. V., Mazur V. A., Rogankov V. B. The critical parameters and congruent
vapor-liquid diagram of ten metallic alkali and alkaline earth fluids and one H-bond
organic (methanol) // Fluid Phase Equilibria. — 2018. — Vol. 455. — 15-23.

27



®dizuka aepoaucnepcHux cucrem. —2019. — Ne 56. — C. 14-29

19.Ma T. and Wang S. Third-order gas-liquid phase transition and the nature of An-

drews critical point / AIP Advances. —2011. — Vol. 1.-P. 1-20.

20. Filippov L.P. Methods of Calculation and Prediction for Thermophysical Properties.

— Moscow Univ. Publ., M., 1988. — 250 p.

21. Lienhard J.H., Shamsundar N., Biney P.O. Spinodal lines and equations of state: A

review // Nuclear Engineering and Design. — 1986. —Vol. 95. — P. 297-314.

22.Michels A., Blaisse B., Michels C. // Proc.R.Soc.London A160. — 1937. — P. 358-

375.

23. Pocankog B. b. ®nykryallioHHasl T€OpUsS TEPMOAMHAMUYECKON MOBEPXHOCTH (Irto-

28

UIHBIX cocTosiHMM // JImccepTamust qoKT.-hu3-mart. Hayk, Jleaunrpam, 1991. — 212 c.

Pozankoe B. b., IlIeeuv M. B., Pozankoe O. B., Qikyukoea T. O.

HaakpuTnyHa rereporeHHa HAHOCTPYKTYpa (pJaroiais.
Yacrunal. [diarpama ¢uaykryaniiHux nepexonaiB y Heri00ciBcbkuXx (pazax

AHOTAILIA

3anpononosano Ho8y Konyenyilo 06a1acmi HAOKPUMUYHOIL ui0ioHoI n08edinKu wob nosc-
HUMU CYKYNHICMb HOBUX eKCNEPUMEHMANbHUX | YUCETbHUX Pe3yIbmamis, 8 AKUX 3a2albHON-
puliHAmMa meopisi ACUMRMOMUYHO20 CKeUNiHeY ma il po3uupents Ha Oinbuwull inmepean na-
pamempis 0ocsearomeb medici npuoamuocmi. ICHysanus cemepoceHnoi cmayionapHoi HaHOCM-
PYKMYpU 2pamoso2o muny 6 WupoKux 0iana3oHax HaOKpUmMuyHux eracmueocmei, wo o6yna
Hazsauna He-2ibOCiscbKot Gazoro ¢haroidy, oyro 3anpononosamne B.B.Pocankosum y pamkax
mooeni T (paykmyayiunoi mepmoounamixu). T-modenv cmeepodicye, wo aHaio2iyHa He-
2ibbciscvka hasa icHye i HudCHe KpUMmuuHoi memnepamypu 8 6y0b-aKoOMY peairbHOMY (moomo
CKIHUeHHO-00'eMHOMY) nepexodi napa-piouna. s poboma 6cmanosuoe eeomempuyny hopmy
i NONOJICEHHSI MOYHUX 2PaHUYDb O HAOKPUMUYHOL He-2ibbciecbkoi (haszu Ha pazosiil diacpa-
Mi, WO NiOMEepONCYEMbCsl HAOOPOM HeWO0OABHO ONYONIKOBAHUX eKCREPUMEHMAILHUX [ MOOe-
JIbHUX pesyrbmamis. Kopomko kaocyuu, 3aeanvha HaokpumuyHa obnacme @rwoidy ckraoa-
embcsi 3 po3dasieHol 2azonodionoi 2ibOciecbkoi comozennoi Gazu i winbHOI PiOUHHO-
nooibHOI 2i66CiBChKOI 20MO2eHHOI (hasu, I0OKpeMACHUX 00OHA 8I0 OOHOI 2emepoceHHOoI (U0~
HatiMeHue, 8 HAHOWApPax CKIHUeHHo20 00 emy) naponodionorw gazoro. Ilpakmuune suxopuc-
MAHHA MAKOi CMPYKMYpu mModxce Oymu 00cums nepcneKmusHumM y 6azamvox cepax zacmo-
cysanns. Lle cmeepooicenns, 36uuauno, He 00MedHCeHO auule Bi0OMUMU OOCACHEHHAMU 8
NPAKMUYHOMY 30ILUCHEHHI NPoYeci8 HAOKPUMUYHOT eKCIPaKyii.

Knrouoei cnosa: naokpumuunuii @pnoio, eemepozenti (ne2ibcoscovki) gasu, mooenv @uyk-
myayiuHoi mepmooOuHamiKu
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Pozankoe B. b., llleey M. B., Pozanxoe O. B., Quxkynukoea T. A.

CBepxkpuTHYECKasi reTePOreHHass HAaHOCTPYKTYpPa (IIOHA0B.
Yacrtp 1. lnarpamma QuIyKTyalMOHHBIX IIEPeX010B B Heruo60coBCcKux ¢azax

AHHOTALIMA

Ipeonoocena nosas konyenyus ceepxkpumuyeckou gurouonou (CK®@) obracmu ¢ yenvio
unmepnpemayuu psioa dKCNePUMEeHMAalIbHbIX U NOJIYYEHHbIX YUCTEHHbIMU Memooamu HaOa0-
Oenutl, 8 KOMOPBIX UCNOb308AHUE NPUHAMOU ACUMNIMOMUYECKOU Meopuu CKelluHed u ee
KPOCCOBEpHO20 pacuiupenuss oocmueaem npedena npumernumocmu. Cyujecmeosarue ycmoui-
YUBOU, PeULemOYH020 MUNA, 2emepoceHHOU HAHOCMPYKMYPbL 8 WUPOKUX UHMEPBALAX C8epX-
KpUmuyeckux napamempos, Ha3eanHol necubbocosckoti ¢aouonou (HI'D)-ghaszou, dviio eu-
nomemuyecku cgpopmyauposano B.b. PoeaHKko8biM 6 pamKkax mMooenu QayKmyayuoHHou mep-
moounamuxu (DT). C nomowpio @T-modenu b6vi10 dokazano, umo nodoouas HI'@-¢asa cy-
wecmeyem makice npu memMnepamypax, MeHbuux Kpumuyeckoul 11000l peanvbHol cucmeme
KOHeuHo020 obvema, 8Onu3u om HaAOI00aemMo20 8 Hell NApo-HCUOKOCMHO20 PABHOBECHO20
(IDKP) nepexooa. B nacmosweu pabome ycmanosienbl moutbie cpaHuybl U pacnoioHiceHue
ceepxkpumuveckou HI D-ghazel na Ouacpamme cocmosinuil, nNOOMBEPAHCOEHHbIE HEOABHO
ONYOIUKOBAHHBIMU PE3YIbMAMAMU IKCNEPUMEHMA U YUCTEHHbIX cumyaayull. B enagnom, o6-
nacmv CK® obpazyemcs ceemenmamu pazoasieHHou 2a30-no00OHOU (noumu 20MO2eHHOl)
2ubOCoB8CKOU ¢hazvl u NIOMHOU, HCUOKOCIMHO-NOOOOHOU (20MO2eHHOU) 2ubOCOBCKOU (hasbl,
OMOENEHHBIX 0OHA OM OPY2oll 0OIACMbIO 2eMePO2eHHOU (N0 MeHbUell Mepe, 8 HAHOMACUMA-
bax Koneunvix 00vemos) HI ' D-gazvl nap-srcuoxocmnozo muna. Ilpakmuueckoe ucnonb306a-
Hue ungopmayuu o maxou ynusepcanroroti CK®-cmpykmype moxcem Obims oueHb nepcnex-
MUBHO 011 MHO2OYUCTEHHBIX NPUKIAOHBIX 3a0a4. J{aHublli NOOX00 SI8HO He 02PAHUYEH MOJbKO
U3BECMHBIMU NPEUMYUWECMBAMU NPOBEOCHUSL NPOYECCO8 CEEPXKPUMUUECKOU IKCMPAKYUU.

Knwouesvie cnosa: ceepxxpumuueckuii ¢hnrouod, cemepocentvie (ne-eubocosckue) ¢hasvl,
MoOenb PyKmyayuoHHOU MepMOOUHAMUKU.
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