ФИЗИКА ГОРЕНИЯ

УДК 66.03+66.011

Е. Н. Кондратьев, Е. А. Мартынова

Одесский национальный университет им. И. И. Мечникова, Одесса

Анализ динамики поведения реактора идеального смешения вблизи особой точки типа фокус

В данной работе рассматривается неизотермический проточный реактор идеального смешения, в котором происходит гомогенное реагирование. Найден устойчивый фокус и предельный цикл. Проведено графическое решение системой уравнений тепломассообмена, и получено, что максимальное количество особых точек в фазовом пространстве концентрация – температура равно трем. При увеличении объемного расхода вещества устойчивый фокус, становясь неустойчивым, порождает устойчивый предельный цикл. Проведенные расчеты обнаруживают широкую зону существования предельного цикла.

В связи с разработкой проточных реакторов нового поколения [1] возрос интерес к проблеме контроля и регулирования реакторов подобного типа. С одной стороны это необходимо для увеличения производительности реактора, а с другой - для повышения тепловой мощности без снижения его надёжности. Чтобы определить наиболее подходящий способ управления реактором необходимо знание особенностей его динамического поведения [2].

Как показано в работе [3] в зависимости от типа устойчивости реактора выбирается адекватный способ управления. В частности, в окрестности узла требуется жесткое управление. А в случае фокуса – мягкое, с незначительным по величине и не продолжительным по времени изменением параметров системы.

Для нахождения связи между моделями различных реакторов целесообразнее проводить анализ динамики реактора по безразмерной модели.

В данной работе рассматривается неизотермический проточный реактор идеального смешения, в котором происходит гомогенное реагирование. Для такого реактора изменение безразмерной концентрации – х и температуры – у со временем описывается квазистационарной системой уравнений тепломассообмена:

$$\begin{cases} \frac{dx}{d\tau} = (x_{f} - x)\delta - xe^{-\frac{\alpha}{y} + \beta} \\ \frac{dy}{d\tau} = y_{p} - y + xe^{-\frac{\alpha}{y} + \beta} \end{cases}$$

где $x_{f} = \frac{C}{C_{f}}$ - безразмерная величина входного потока предварительно перемешанного топлива, $\beta = \ln z \overline{\tau}$ – максимальная активность реакции, $y_{p} = \frac{y_{f} \tau_{y} + y_{\infty} \tau_{x}}{\tau_{x} + \tau_{y}}$ - безразмерная приведенная температура, учитывающая температуры входного потока и стенок реактора, $\tau_{x} = \frac{V}{u}$ – характерное время пребывания смеси в реакторе, $\tau_{y} = \frac{r^{2}c_{p}\rho}{6\lambda}$ – характерное время теплоотвода, полученное из выражения для цилиндрического реактора $\tau_{y} = \frac{c_{p}\rho V}{\alpha_{t}S}$, $\tau = \frac{t}{\tau}$ - безразмерное время, где $\overline{\tau} = \frac{\tau_{x}\tau_{y}}{\tau_{x} + \tau_{y}}$ - приведенное время, $\delta = \frac{\tau_{x}}{\tau}$ – приведенная скорость теплового пото-ка, имеет смысл характерной безразмерной частоты, $\alpha = \frac{E}{RT_{m}}$ - безразмерная энергия активации, $T_{m} = \frac{QC_{f}}{c_{p}\rho}$ – адиабатическая температура.

Таблица 1.

Физические параметры	Значения параметров	
Входная температура, Т _г	1420 K	
Входная концентрация вещества, C _f	1.1532 · 10 ⁻⁵ моль/см ³	
Плотность смеси, ρ	2.4218 · 10 ⁻⁴ моль/см ³	
Объем реактора, V	42,41 см ³	
Длина реактора, l	24 см	
Радиус реактора, r	0.75 см	
Коэффициент теплопроводности, λ	2.86 ⁻ 10 ⁻⁴ Вт/(м К).	
Теплота реакции, Q	11950 Дж/моль	
Объемный расход, и	800 см ³ /с	
Температура стенок реактора, <i>т</i> _с	1400 K	
Энергия активации, Е	136940 Дж/моль	
Предэкспоненциальный множитель, z	364000 c ⁻¹	

Физические параметры реактора и вещества.

В зависимости от значений параметров системы реализуются различные стационарные состояния. Один из вариантов значений параметров представлен в таблице 1. Каждому набору параметров отвечает свой тип фазового портрета, который отражает особенности динамики системы и взаимного расположения фазовых траекторий и особых точек.

В результате проведенного графического решения, представленного на рис.1, получено, что максимальное количество особых точек в фазовом пространстве концентрация – температура равное трем. Кривой 1 на рисунке соответствует функция в системе приведенной реакции $f_1 = \frac{x_f}{e^{\alpha/y-\beta} + 1/\delta}$, а кривой 2 – функция $f_2 = y - y_p$, представляющая собой скорость теплоотвода.

Рис.1 Расположение стационарных состояний безразмерной системы.

Если реактор непрерывного действия обладает тремя положениями равновесия, то среднее из них – всегда является седлом, т.е. неустойчиво, а два других положения равновесия могут быть как устойчивыми, так и неустойчивыми [4]. Однако для целей наиболее легкого управления реактором наибольший интерес представляют фазовые портреты, содержащие только одну особенность. В этом случае показано, что особой точкой может быть устойчивый фокус, на приведенной диаграмме Семенова эта особая точка соответствует касанию кривой теплотвода в точке перегиба функции реакции.

В окрестности устойчивого фокуса фазовые траектории имеют вид сходящихся к точке (C_0 , T_0) фазовых траекторий, с координатами точки $C_0=5,68\cdot10^{-6}$ моль/см³, $T_0=1637$ K, отображенных на рис.2. Стрелками указано направление движения по фазовым траекториям.

На рис.3 представлены динамические зависимости температуры и концентрации в реакторе вблизи особой точки типа устойчивый фокус. Видно, что динамические кривые затухающие, что свидетельствует об устойчивости фокуса. Период в малой окрестности порядка 0,25 с.

При малом изменении параметров системы, например, одного из них входного потока топлива в сторону увеличения по сравнению с 600 см³/с происходит трансформация устойчивого фокуса в предельный цикл (рис.4). При этом внутри предельного цикла, образуется особенность типа неустойчивый фокус с координатами $C_0 = 5,02 \cdot 10^{-6}$ моль/см³, $T_0 = 1738$ M. Фокус неустойчив и все фазовые траектории удаляются от него, асимптотически приближаясь к

Рис. 2. Фазовый портрет при $u=600 \text{ см}^3/c$.

Рис.3 Динамические зависимости температуры и концентрации в реакторе вблизи особой точки типа устойчивый фокус.

замкнутой кривой. Для проверки устойчивости предельного цикла было проведено исследование внешней его части, и получено, что она также асимптотически приближается к этой же замкнутой кривой. Таким образом, найденный предельный цикл является аттрактором. Видно, что с изменением входного параметра u, особая точка сместилась в сторону более высоких температур и низких концентраций.

На рис. 5 и 6 представлены динамические кривые температуры и концентрации. На рисунке 5 представлены динамические кривые для внутренней час-

Рис.4. Фазовый портрет при u=800 см³/с.

ти предельного цикла, а на рис. 6 – для внешней. Период в малой окрестности порядка 0,14 с для внутренней и внешней части предельного цикла.

Рис.5 Динамические кривые температуры и концентрации особой точки предельного цикла для его внутренней части.

Рис.6. Динамические кривые температуры и концентрации особой точки предельного цикла для его внешней части.

Таблица 2.

Координаты стационарных значений температуры и концентрации в зависимости от объемного расхода вещества.

Bhemiloeth of obbeniloro pueriodu beneerbu.				
Объемный		Стационарное	Стационарное зна-	
расход ве-	Тип особенности	значение тем-	чение концентра-	
щества,		пературы	ции	
500 см ³ /с	устойчивый фокус	1605 K	5,94·10 ⁻⁶ см ³ /с	
600 см ³ /с	устойчивый фокус	1637 К	5,68·10 ⁻⁶ см ³ /с	
700 см ³ /с	устойчивый предельный цикл	1686 K	5,48·10 ⁻⁶ см ³ /с	
800 см ³ /с	устойчивый предельный цикл	1738 К	5,02·10 ⁻⁶ см ³ /с	
900 см ³ /с	устойчивый предельный цикл	1795 K	4,49·10 ⁻⁶ см ³ /с	
1000 см ³ /с	устойчивый предельный цикл	1851 K	$4,02 \cdot 10^{-6} \text{ cm}^3/\text{c}$	
1100 см ³ /с	устойчивый предельный цикл	1903 K	3,62·10 ⁻⁶ см ³ /с	

1200 см ³ /с	устойчивый предельный цикл	1952 К	3,31·10 ⁻⁶ см ³ /с
1300 см ³ /с	устойчивый фокус	1995 К	3,06·10 ⁻⁶ см ³ /с
1400 см ³ /с	устойчивый фокус	2036 К	2,91·10 ⁻⁶ см ³ /с
1500 см ³ /с	устойчивый фокус	2073 К	2,72·10 ⁻⁶ см ³ /с
1600 см ³ /с	устойчивый фокус	2107 К	2,57·10 ⁻⁶ см ³ /с
1700 см ³ /с	устойчивый фокус	2138 К	2,48·10 ⁻⁶ см ³ /с

При увеличении объемного расхода вещества с $600 \text{ см}^3/\text{с}$ до $700 \text{ см}^3/\text{с}$ устойчивый фокус, становясь неустойчивым, порождает устойчивый предельный цикл. При изменении значения параметра в противоположном направлении устойчивый предельный цикл, окружавший неустойчивый фокус, стягивается в фокус, который становится устойчивым. Так, например, при изменении скорости подачи топлива от $1200 \text{ см}^3/\text{с}$ до $1300 \text{ см}^3/\text{с}$ происходит переход в устойчивый фокус. При дальнейшем увеличении скорости подачи топлива до $1500 \text{ см}^3/\text{с}$ происходит смещение координат стационарных состояний в область высоких температур и низких концентраций, как видно из таблицы 2.

Проведенные расчеты обнаруживают неожиданно широкую зону существования предельного цикла. Так, например, при сохранении прочих параметров системы, при изменении подачи топлива с 700 до 1200 см³/с наблюдается существование устойчивого предельного цикла. Таким образом, объемный расход вещества может изменяться на 35%.

Литература

- 1. Феоктистов Л.П. Нейтронно-делительная волна // Доклады академии наук СССР. –1989. Т. 309, № 4, С. 864-867.
- 2. Франк Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. – М.: Наука, 1967. – 491с.
- 3. Дайчман Е.Е., Кондратьев Е.Н. Модель циклически обостряемого реактора // Вісник Одеськ. держ. ун-ту. 2001. Т. 6, вип. 3. Фіз.-мат. науки. С. 134-140.
- 4. Вольтер Б.В., Сальников И.Е. Устойчивость режимов работы химических реакторов. М.: Химия, 1981. 198с.

Е.М. Кондратьєв, О.О. Мартинова

Аналіз динаміки поводження реактора ідеального змішування поблизу особливої крапки типу фокус

АНОТАЦІЯ

У даній роботі розглядається неізотермічний проточний реактор ідеального змішування, у якому відбувається гомогенне реагування. Знайдено стійкий фокус і граничний цикл. Проведено графічне рішення системи рівнянь тепломасообміну, і отримано, що максимальна кількість особливих крапок у фазовому просторі «концентрація-температура» дорівнює трьом. При збільшені об'ємної витрати речовини стійкий фокус, стаючи нестійким, породжує стійкий граничний цикл. Проведені розрахунки виявляють широку зону існування граничного циклу.

E.N. Kondratev, O.O. Martynova

The analysis of dynamics behaviour of the reactor of ideal mixture near to the special point of type focus

SUMMARY

In the given work we considered not isothermal flowing reactor of ideal mixture in which there is a homogeneous reaction. Steady focus and a limiting cycle is found. The graphic decision by system of the equations heat and mass exchange is lead, also received, that a maximum quantity of special points in phase space "concentrationtemperature" to equally three. At increase in the volumetric charge of substance steady focus, becoming unstable generates a steady limiting cycle. The lead calculations find out a wide zone of existence of a limiting cycle.