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Diffusion in water – trehalose solutions 

 
The model of volume fraction dependence of the diffusion coefficient of trehalose molecules 

in water solution is performed. Two factors influence the diffusion coefficient: the osmotic 
pressure of trehalose molecules in solution and their mobility. At small values of volume frac-
tion pressure plays the main role, at large enough the mobility does. Due to such concept we 
managed to explain the surprising behavior of experimentally observed diffusion coefficient.  

 
 

1. Introduction. In last decades the considerable attention is paid to the study of 
transport processes in water – trehalose solutions [1 – 3]. In the first place it is con-
nected with studying the bio – protector function of trehalose [1]. This property of 
trehalose and also others disaccharides remain to be weakly investigated and there-
fore stimulate the detailed analysis of transport processes and hydration effects in 
their water solutions. From another side, diffusion coefficient D dependence on vol-
ume fraction ϕ  shows a surprising behavior, which has no explanation within the 
simplest representations of the diffusion process and is the challenge from theoretical 
point of view. 

It was established that at small values of volume fraction ( 0.09ϕ < ) the collec-
tive diffusion coefficient increases, attends the maximum at 0.1ϕ =  and after this it 
rapidly decreases. Similar behavior of the diffusion coefficient is observed in other 
disaccharide solutions too. Two problems arise: 1) theoretical model for such behav-
ior is to be proposed; 2) so small values of the maximum peak position have to be ex-
plained. 

In previous work [4] we explained the the behavior peculiarities of tangent of in-
clined angle of ( )D ϕ  dependence at small values of volume fraction ( 0ϕ → ) which 
are mainly connected with the destruction of the water H – bond network in thin layer 
around trehalose molecule and appearance of new contribution to the inter – molecu-
lar potential. 

In this paper ( )D ϕ  dependence in all range of experimentally observed volume 
fraction (0 0.4< ϕ < ) performed and curiously small value of peak position explained 
using the knowledge of H – bonds and interaction potential [4]. 

 
2. General structure of the diffusion coefficient. In general case, for solid 

spherical particles, the volume fraction ϕ  dependence of the collective diffusion co-
efficient on the measured experimentally ϕ  is represented as follows 
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where (0)D  – is the diffusion coefficient for infinitely dilute solution, ( )g ϕ  – is the 
mobility of the particle,  ( )P n  – osmotic pressure considered as a function of density  
n  of admixture particles,  T  – is temperature. 

The volume fraction ϕ  (used in [2, 3] for the description of experimental data)  
t
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is a volume fraction of ideal solution. tM  and wM  are the molecular masses of treha-
lose and water, tn  and wn  are the number densities of trehalose and water molecules 
in water-trehalose solutions, tρ  and wρ  are the mass densities of trehalose melt and 
pure water. 

Due to hydration effects the real volume fraction Φ , occupied by admixture par-
ticles (trehalose molecule with mono layer of hydrated water molecules), is more than 
ϕ  and can be determined by the relation 

t w
H t

t w

t t w w

t w

M M n n

M n M n

 
+ ρ ρ Φ =

+
ρ ρ

,          (2) 

where Hn  is the hydration number of water molecules (jointed with a trehalose mole-
cule). It is not difficult to see, that: 

1 w t
H

t w

M n
M

 ρ
Φ = + ϕ ρ 

. 

At t wρ ≅ ρ , previous formula can be rewritten in the form: 
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where  0.053w

t

M
M

=  is the ratio of molecular masses for water ( wM ) and a trehalose 

molecule ( tM ). 
 
3. The osmotic pressure. The osmotic pressure of admixture particles can be 

modeled by the virial expansion 
2 2

0 0(1 ( ) ...)BP nk T nv nv an= + + + − ,    (4) 

where 0 4 mv v= , and 3
0

4
3mv r= π  is the molecular volume, 0r  radius of trehalose mole-

cule. 
In general [5], the coefficient a  is connected with interparticle potential )(rU  by 

the relation 
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As it’s been shown in [4] the potential ( )U r  is the sum of the Van der Waals 
contribution ( )WU r  and the term ( )FU r  caused by the fluctuation multipole interac-
tions [6] 

( ) ( ) ( )w FU r U r U r= + . 
In fact, both terms WU  and FU  are origined by fluctuations of the electric field, 

however, WU  is connected with high frequency ones in the electronic cells of mole-
cule, while FU  arises due to the destruction of the H-bond network in water around a 
trehalose molecule the last acquires the nonzero dipole moment, as a result, the addi-
tional fluctuation multipole-multipole potential of intermolecular interaction arises 
[4]: 

62
0

3
0

( )( ) s
F

d rU r
r r

< >  =  
 

r
.     (6) 

Here sd  is the fluctuational dipole moment of an admixture molecule. More ex-
actly sd

r
 is the sum of dipole moments of water molecules, forming the molecular 

layer around a trehalose molecule. It is expedient to write 2 2 2
s wd d< >= ξ , where wd  is 

the dipole moment of a water molecule. So the number of water molecules in the 
shell which surrounds the trehalose molecule and generates dipole moment of com-
plex molecule is equal to ξ .  As a result 

w Fa a a= − ,      2 21
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0 470T K=  for this system [4]. It is naturally to expect that ξ  and also 2( )sd< >
r

 are 
strong functions of temperature. Values of ξ  at different temperatures were obtained 
in [4] and placed in Table. 

It was shown [4] that the average number of water molecules, hydrated by a tre-
halose molecule equals to 14Hn ≈ . As we can see, the values of ( )Tξ  and Hn  are of 
the same order of magnitude. This is important argument in favor of interpretation 
proposed. The strong temperature dependence of ξ  is in agreement with the ten-
dency, characteristic for H-bond networks of water [2,3] in the investigated tempera-
ture interval. Therefore, the similar variations of a  and ξ  with temperature testify on 
the self – consistency of the approach proposed. The estimates for ( )Tξ  can be im-
proved if we take into account the quadrupole – quadrupole interactions and ones of 
higher order in the formula (6). 

               Table.  Temperature dependence of the parameter ξ  [4].  

,T K  313 333 358 

ξ  3.6 14.4 19.3 
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4. The effective shear viscosity. The values of the shear viscosity depend on the 
experimental methods used for its measuring. This statement naturally illustrates by 
the motion of Brownian particle with radius bR  in suspension of hard spheres with 
radius 0R . Evidently that thermal motion of a Brownian particle depends on its size 

bR  and the average distance between suspended particles GR . It is necessary to differ 
the following characteristic cases:    

1) 0b GR R R≤ << ,               2) 0bR R R≤ << ,                  3)  b GR R>> . 
In the first case when the size of a Brownian particle is essentially smaller GR , 

its mobility g  is mainly determined by the shear viscosity 0η  of the solvent. It is so, 
since suspended particles play the role of far boundary, almost not influencing the 
character of hydrodynamic flows in the vicinity of Brownian particles. Unlike this in 
the third case, when b GR R>>  , the mobility of a particle is inversely proportional to 
the average shear viscosity η. In more direct way these values of the shear viscosity 
are measured in the viscosimetric experiments. 

In the intermediate case when 0b GR R R≤ ≤ , the mutual disposition of admixture 
particles considerably influence its mobility, which should be proportional to so 
called effective shear viscosity effη . The magnitude of effη  is more than 0η , but 

smaller than η. 
In particular, the value of effη  can be obtained from NMR measurements, since 

the self-diffusion coefficient SD  of dense enough system is inversely proportional 
namely the effective shear viscosity. 

It was proposed [8] a new version of the cell model for the determination of the 
average and effective shear viscosities for suspension of hard spheres. According to 
[8], the expression for the effective shear viscosity takes the following form 
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At 0Φ →  the formula (8) has the asymptote 
2

0( ) (1 6.25 ...)effη Φ = η + Φ + .         (9) 
The comparison of the effective effη   and average shear viscosities is presented 

in Fig. 1.  
 
5. The diffusion coefficient. We take into account that the behavior of the mo-

bility g is determined with the effective shear viscosity 
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As it follows from formula (1), that the volume fraction dependence of the diffu-
sion coefficient is determined by two factors: 1) osmotic pressure, leading to increase 
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of D with Ф and 2) the effective shear viscosity of surrounding liquid, which reduces 
the diffusion coefficient when Φ  increases. From (4) we find 
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where a is defined in (5). And finely the expression for the diffusion coefficient in all 
range of volume fraction values has a form 
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The reason of the peak existence is: at small values of volume fraction the den-
sity derivative of pressure is proportional to Ф 
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the effective shear viscosity changes as the square of Ф, therefore the behavior of the 
diffusion coefficient is determined by the osmotic pressure: D increases. At large val-
ues of Ф the effective shear viscosity has the dominate influence, that leads to the re-
duction of D.      

 
6. Peculiarities of the diffusion process in water – trehalose solution.    
The analysis of the formula (12) allows concluding, that the position of maxi-

mum of ( )D Φ  for hard spheres corresponds to 0.4Φ ≈ . This value of the volume 
fraction is four times more than the value measured in experiments for trehalose – 
water solution. It was noticed [2, 3] that the hydration phenomenon strongly influ-
ences transport processes in water – trehalose solution. Let us consider this effect in 
more details. 

 
Fig. 1. Volume fraction dependence of the average (the curve 1) and effective (2) 

shear viscosities. 
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At small enough values of the volume fraction the hydrated shell of two 
neighbor trehalose molecules does not overlap. When volume fraction increases, this 
condition becomes violated and consequently a trehalose molecule with its hydrated 
shell can not be considered as an isolated complex particle (trehalose molecule + hy-
drated water molecule). As a result, the Van der Waals expression for the osmotic 
pressure is not applicable. 

Let us estimate the applicability region for the formula (4). One supposes that 
the density derivative of pressure tends to zero when molecular complexes form spa-
tial percolation configuration. For such system of spherical particles the percolation 
barrier is equal to 0.3∗Φ ≈ . Since the geometrical radius of a trehalose molecule 
equals to 6 Å the thickness of hydration shell is about 3 Å, we obtain that the radius 
r%  of a molecule and its molecular complex equals to 9 Å. From here it follows that 

the ratio 
0

r
r
%

 of radiuses of a complex particle and a trehalose molecule is equal to 1.5. 

Since volume of a trehalose molecule and its molecular complex is  proportional to 
3r% , the volume fraction mϕ , measured experimentally for the percolation configura-

tion and ∗Φ  are connected by (with) the following relation: 
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From (13) it follows that 0.09mϕ = . This estimation for the applicability region 
of our theory coincides with the experimental values of volume fraction, at which the 
diffusion coefficient reaches maximum. Up to 0.09mϕ =  it is possible to use repre-
sentation (4) (curve 1 in Fig.2 ). At mϕ > ϕ  the Van der Waals equation of state is not 

 
 

Fig. 2. Volume fraction dependence of the diffusion coefficient of trehalose 
molecule: the curve 1 corresponds to the formula (1), 2 – the formula (12), 
squares – to experimental data [3].  
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applicable, since the density derivative of the osmotic pressure becomes negative. In 
this region the mobility of a complex particle plays the main role. Therefore equation 
(12) should be written in the form 

(0) ( )( )
(0)B

D A gD
k T g

ϕ
ϕ = ,           (14) 

where constant A is  equal to the density derivative of osmotic pressure at 
mϕ = ϕ : 

.
m

PA
n ϕ=ϕ

∂
=

∂
 

The comparison of values for the diffusion coefficient, calculated according to 
(14), with experimental data is represented with the curve 2 (Fig. 2). 

 
7. Conclusion.  
The main attention in the present paper is focused on the volume fraction de-

pendence of the diffusion coefficient in dilute water-trehalose solutions. The main 
feature of the behavior of diffusion coefficient in this system is the small enough 
peak volume fraction value. It was shown that such small value is due to the effect of 
overlapping of the trehalose molecules hydrated shells. The theory at small and large 
volume fraction values is proposed. The comparison with experimental data is per-
formed. 
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Орлов Є.В. 

 Дифузія у водних розчинах трехалози 
 

АНОТАЦІЯ 
Запропонована модель залежності коефіцієнта дифузії молекул трехалози від їх 

об’ємної частки у водному розчині. Два фактори впливають на коефіцієнт дифузії: 
осмотичний тиск молекул трехалози в розчиннику та їх рухливість. При малих значен-
нях об’ємної долі основну роль грає осмотичний тиск, а при великих – рухливість. За-
вдяки таким припущенням можна пояснити доволі незвичну поведінку коефіцієнта 
дифузії, яка спостерігається експериментально.    

 
 

 

Орлов Е.В. 

Диффузия в водных растворах трехалозы 
 

АННОТАЦИЯ  
Предложена модель зависимости коэффициента диффузии молекул трехалозы от 

их объемной доли в водном растворе. Два фактора влияют на коэффициент диффу-
зии: осмотическое давление молекул трехалозы в растворителе и их подвижность. 
При малых значениях объемной доли основную роль играет осмотическое давление, а 
при больших – подвижность. Благодаря таким допущениям можно объяснить доволь-
но необычное поведение коэффициента диффузии, наблюдаемое экспериментально. 


