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Diffusion in water — trehalose solutions

The model of volume fraction dependence of the diffusion coefficient of trehalose molecules
in water solution is performed. Two factors influence the diffusion coefficient: the osmotic
pressure of trehalose molecules in solution and their mobility. At small values of volume frac-
tion pressure plays the main role, at large enough the mobility does. Due to such concept we
managed to explain the surprising behavior of experimentally observed diffusion coefficient.

1. Introduction. In last decades the considerable attention is paid to the study of
transport processes in water — trehalose solutions [1 — 3]. In the first place it is con-
nected with studying the bio — protector function of trehalose [1]. This property of
trehalose and also others disaccharides remain to be weakly investigated and there-
fore stimulate the detailed analysis of transport processes and hydration effects in
their water solutions. From another side, diffusion coefficient D dependence on vol-
ume fraction j shows a surprising behavior, which has no explanation within the
simplest representations of the diffusion process and is the challenge from theoretical
point of view.

It was established that at small values of volume fraction (j <0.09) the collec-
tive diffusion coefficient increases, attends the maximum at ] =0.1 and after this it
rapidly decreases. Similar behavior of the diffusion coefficient is observed in other
disaccharide solutions too. Two problems arise: 1) theoretical model for such behav-
lor isto be proposed; 2) so small values of the maximum peak position have to be ex-
plained.

In previous work [4] we explained the the behavior peculiarities of tangent of in-
clined angle of D(j ) dependence at small values of volume fraction (j ® 0) which

are mainly connected with the destruction of the water H — bond network in thin layer
around trehalose molecule and appearance of new contribution to the inter — molecu-
lar potential.

In this paper D(j ) dependence in all range of experimentally observed volume
fraction (0<j <0.4) performed and curiously small value of peak position explained
using the knowledge of H — bonds and interaction potentia [4].

2. General gructure of the diffusion coefficient. In general case, for solid
spherical particles, the volume fraction | dependence of the collective diffusion co-

efficient on the measured experimentally | isrepresented as follows
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where D(0) — is the diffusion coefficient for infinitely dilute solution, g(j ) —isthe
mobility of the particle, P(n) — osmotic pressure considered as a function of density

n of admixture particles, T —istemperature.
The volume fraction | (used in [2, 3] for the description of experimental data)
Mt
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is a volume fraction of ideal solution. M, and M, are the molecular masses of treha-
lose and water, n, and n,, are the number densities of trehalose and water molecules
in water-trehalose solutions, r, and r , are the mass densities of trehalose melt and

pure water.

Due to hydration effects the real volume fraction F , occupied by admixture par-
ticles (trehalose molecule with mono layer of hydrated water molecules), is more than
] and can be determined by the relation
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where n,, isthe hydration number of water molecules (jointed with a trehalose mole-
cule). It isnot difficult to see, that:

0.
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At r, @, previous formula can be rewritten in the form:

F =), @3

t

where % =0.053 is the ratio of molecular masses for water (M) and a trehalose
t
molecule (M,).

3. The osmotic pressure. The osmotic pressure of admixture particles can be
modeled by the virial expansion

P =nk,T(L+nv, +(nv,)* +..) - an, (4)
where v, =4v_, and v, :gpr(f‘ is the molecular volume, r, radius of trehalose mole-

cule.
In genera [5], the coefficient a is connected with interparticle potential U (r) by
the relation

57



Table. Temperature dependence of the parameter X [4].

T,K 313 333 358
X 3.6 144 19.3
¥ _U(n) ¥
a=-2pk,T ¢Y1- e " )r’dr @ 2p ¢JJ (r)rdr. (5)

21y 2ry
As it's been shown in [4] the potential U (r) is the sum of the Van der Waals
contribution U, (r) and the term U_(r) caused by the fluctuation multipole interac-
tions [6]
U(r)=uU,(r)+U.(r).
In fact, both terms U,, and U are origined by fluctuations of the electric field,
however, U,, is connected with high frequency ones in the electronic cells of mole-
cule, while U arises due to the destruction of the H-bond network in water around a

trehalose molecule the last acquires the nonzero dipole moment, as a result, the addi-
tiona fluctuation multipole-multipole potential of intermolecular interaction arises

[4]: |
6
< (ds)2 > &O O 6
T (6)
A r g
Here d. is the fluctuational dipole moment of an admixture molecule. More ex-

UF(r) =

actly d is the sum of dipole moments of water molecules, forming the molecular
layer around a trenalose molecule. It is expedient to write<d? >=xd’, where d,, is

the dipole moment of a water molecule. So the number of water molecules in the
shell which surrounds the trehalose molecule and generates dipole moment of com-
plex moleculeis equal tox. Asaresult

1 11
a= aw - aF ' aF :ZXZdv%’ aw :ZkBTOVm’ (7)

T,=470K for this system [4]. It is naturally to expect that x and also <(cilj) > are
strong functions of temperature. Values of x at different temperatures were obtained
in [4] and placed in Table.

It was shown [4] that the average number of water molecules, hydrated by a tre-
halose molecule equals to n, »14. As we can see, the values of X(T) and n, are of
the same order of magnitude. This is important argument in favor of interpretation
proposed. The strong temperature dependence of x is in agreement with the ten-
dency, characteristic for H-bond networks of water [2,3] in the investigated tempera-
ture interval. Therefore, the smilar variations of a and x with temperature testify on
the self — consistency of the approach proposed. The estimates for x(T) can be im-

proved if we take into account the quadrupole — quadrupole interactions and ones of
higher order in the formula (6).
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4. The effective shear viscosity. The values of the shear viscosity depend on the
experimental methods used for its measuring. This statement naturally illustrates by
the motion of Brownian particle with radius R, in suspension of hard spheres with

radius R,. Evidently that thermal motion of a Brownian particle depends on its size
R, and the average distance between suspended particles R;. It is necessary to differ
the following characteristic cases:
1) RER <R, 2) RER <<R, 3) R>R;.
In the first case when the size of a Brownian particle is essentially smaller R;,
its mobility g ismainly determined by the shear viscosity h, of the solvent. It is so,

since suspended particles play the role of far boundary, amost not influencing the
character of hydrodynamic flows in the vicinity of Brownian particles. Unlike thisin
the third case, when R >> R, , the mobility of a particle is inversely proportional to

the average shear viscosity h. In more direct way these values of the shear viscosity
are measured in the viscosmetric experiments.

In the intermediate case when R £ R £ R;, the mutual disposition of admixture
particles consderably influence its mobility, which should be proportional to so
caled effective shear viscosity h . The magnitude of h, is more than h,, but

smaller than h.
In particular, the value of hg can be obtained from NMR measurements, since

the self-diffusion coefficient D of dense enough system is inversely proportional

namely the effective shear viscosity.

It was proposed [8] a new version of the cell model for the determination of the
average and effective shear viscosties for suspension of hard spheres. According to
[8], the expression for the effective shear viscosity takes the following form

h =h Ly =h,F(F), @®
2-y - 1- 2y%(1- y)

6 F
where y =— 5
p (0.93+0.127F)
At F ® 0 the formula (8) hasthe asymptote

he(F)=h,(1+6.25F% +..)). 9)
The comparison of the effective h,, and average shear viscosities is presented
inFig. 1.

5. The diffuson coefficient. We take into account that the behavior of the mo-
bility g is determined with the effective shear viscosity
9F) PO gy (10)
9  h«(F)
Asit follows from formula (1), that the volume fraction dependence of the diffu-
sion coefficient is determined by two factors: 1) osmotic pressure, leading to increase
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Fig. 1. Volume fraction dependence of the average (the curve 1) and effective (2)
shear viscosities.

of D with ® and 2) the effective shear viscosity of surrounding liquid, which reduces
the diffusion coefficient when F increases. From (4) we find

) L ) 6
P kT gl+ 2y @ —2fna=k,Tel+8F gl- —> 4 (12)
g e Vol g e 4kTmu;a

where a is defined in (5). And fi nely the expression for the diffusion coefficient in all
range of volume fraction values has a form

D(F) = D(O)F (F )l +8F 91 a_ o
gl & ATV, 0p
The reason of the peak existence is. at small values of volume fraction the den-
sity derivative of pressureis proportional to @
ﬂ:ﬁ}”) ~® and h,, =h,(1+6.25F2...)
the effective shear viscosity changes as the square of @, therefore the behavior of the
diffusion coefficient is determined by the osmotic pressure: D increases. At large val-
ues of @ the effective shear viscosity has the dominate influence, that leads to the re-
duction of D.

(12)

6. Peculiarities of the diffusion processin water — tr ehalose solution.

The analysis of the formula (12) allows concluding, that the position of maxi-
mum of D(F) for hard spheres corresponds to F » 0.4. This value of the volume
fraction is four times more than the value measured in experiments for trehalose —
water solution. It was noticed [2, 3] that the hydration phenomenon strongly influ-
ences transport processes in water — trehalose solution. Let us consider this effect in
more details.
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Fig. 2. Volume fraction dependence of the diffusion coefficient of trehalose
molecule: the curve 1 corresponds to the formula (1), 2 — the formula (12),
sguares — to experimental data [3].

At small enough values of the volume fraction the hydrated shell of two
neighbor trehalose molecules does not overlap. When volume fraction increases, this
condition becomes violated and consequently a trehalose molecule with its hydrated
shell can not be considered as an isolated complex particle (trehalose molecule + hy-
drated water molecule). As a result, the Van der Waals expression for the osmotic
pressure is not applicable.

Let us estimate the applicability region for the formula (4). One supposes that
the density derivative of pressure tends to zero when molecular complexes form spa-
tial percolation configuration. For such system of spherical particles the percolation
barrier is equal to F, » 0.3. Since the geometrical radius of a trehalose molecule

equals to 6 A the thickness of hydration shell is about 3 A, we obtain that the radius
i of a molecule and its molecular complex equals to 9 A. From here it follows that

| : . .
theratio — of radiuses of a complex particle and a trehalose moleculeis equal to 1.5.
r-O
Since volume of a trehalose molecule and its molecular complex is proportional to
i°, the volume fraction j _, measured experimentally for the percolation configura-

tion and F. are connected by (with) the following relation:
.3 .3
,F—*:aeﬁi hence j . :F*%g :

im éhg h o
From (13) it follows that j  =0.09. This estimation for the applicability region
of our theory coincides with the experimental values of volume fraction, at which the
diffusion coefficient reaches maximum. Up to j ., =0.09 it is possible to use repre-

sentation (4) (curve 1inFig.2). At j >j  the Van der Waals equation of state is not

(13)
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applicable, since the density derivative of the osmotic pressure becomes negative. In
this region the mobility of a complex particle plays the main role. Therefore equation
(12) should be written in the form

.« _D(O)A(

D)= ROALH) 14)
keT  9(0)

where constant A is equal to the density derivative of osmotic pressure at j = :

a=1P
k5,
The comparison of values for the diffusion coefficient, calculated according to
(14), with experimental datais represented with the curve 2 (Fig. 2).

7. Conclusion.

The main attention in the present paper is focused on the volume fraction de-
pendence of the diffusion coefficient in dilute water-trehalose solutions. The main
feature of the behavior of diffusion coefficient in this system is the small enough
peak volume fraction value. It was shown that such small value is due to the effect of
overlapping of the trehalose molecules hydrated shells. The theory at small and large
volume fraction values is proposed. The comparison with experimental data is per-
formed.
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Opnos €.B.

JAudy3ia y BOATHUX PO3YMHAX TPeXaJio3n

AHOTAILIA
3anpononosana modenv 3anexcnocmi xKoeghiyicnma Ou@ysii Moaekyn mpexanosu 6i0 ix
00’ emHol uacmku y 6oonomy poszuuni. [ea axmopu eniusaroms na xoepiyienm Ougysii.
OCMOMUYHULL MUCK MOJEKYI MPEXano3u 8 pOYUHHUKY ma ix pyxaugicmy. Ipu manux 3nayveu-
HAX 00’ €EMHOI 00Ji OCHOBHY POJlb 2pAE OCMOMUYHULL MUCK, A NPU BEIUKUX — PYXIUGICMb. 3a-
B0AKU MAKUM NPUNYUEHHAM MONCHA NOACHUMU 0080JI He38UUHY NOBeJIHKY Koeiyicnma
oughysii, Aka cnocmepieacmvcs eKCnepuMeHmaIbHo.

Opnose E.B.

Jud¢y3us B BOAHBIX pacTBOpax TPexaJio3bl

AHHOTALIMS
Ipeonoosicena mooens 3asucumocmu Kodgguyuenma oupghysuu morexyn mpexanosvi om
ux obvemHou 0oau 8 800HOM pacmeope. Jeéa ¢paxmopa enusiom Ha Kod3ppuyuenm ougpgy-
3Ul OcMOmMuUYECcKoe O0aslieHue MOLEKYl Mpexanosvl 8 pacmeopumene u ux noOGUICHOCHb.
Ipu manvix 3HaueHusx 06vbeMHOU 00IU OCHOBHYIO POJlb UpAem 0CMOMUYecKoe 0dgieHue, d
npu 60abUWUX — ROOBUNCHOCMb. Bracodapss maxum donyueHusM MOHCHO 0OBACHUMb 0060.1b-
HO HeoObluHOe nosedeHue Koappuyuenma oupgyszuu, Habmodaemoe SKCnepuUMeHmaiIbHo.
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