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Effect of Size on Lattice Thermal Conductivity in Si and Ge Nanowires
from 2K to room temperatures

Lattice thermal conductivity in silicon and germanium nanowires of diameters 22, 37, 56
and 115nm were theoretical investigated in the temperature range between 2K to 300K. Size
dependence of melting point, Debye temperature and group velocity of silicon and germa-
nium nanowires determined and it drops with decreasing their size. The size effects on the
lattice thermal conductivity is calculated using the Debye-Callaway model modified to in-
clude both longitudinal and transverse phonon modes explicitly with the strong effect of scat-
tering of phonons by sample boundaries, mass-differnce and other phonons via both normal
and umklapp process and also the modification of Gruneisen parameter, lattice dislocation
and surface roughness is considered. The results show that lattice thermal conductivity of Si
and Ge nanowires can be significantly smaller than the bulk with reduction of nanowire di-
ameters, the approach yields good agreement with experimental results for Si nanowires, for
Ge nanowires of the same diameters are given and exhibit a lower lattice thermal conductiv-
ity than silicon, enabling future experimental verification.

1. Introduction

In the past two decades, a lot of attention has been paid to the low-dimensional
materials because of their demand for miniaturization of electronic devices and the
desired thermal as well as electric properties for thermoelectric applications [1, 2]. It
was realized that low-dimensional materials can possibly result in a higher power fac-
tor because of the size-quantization effects and electron energy filtering [3] and in
lower thermal conductivity as the lattice wave are confined when the characteristic
length scale of the materials is smaller than or comparable to the phonon mean free
path. Among all the differences in the thermoelectric properties between nanowires
and bulk materials are expected to be most substantial due to large surface-to-volume
ratio of nanowires [4, 5]. Semiconducting silicon and germanium nanowires have
raised interest as promising building blocks for nanoscale electronic devices and
more recently, as efficient thermoelectric materials [6].

Determining the thermal conductivity of semiconducting nanowires plays a
crucial role in the development of a new generation of thermoelectric materials [7].
Historically, lattice thermal conductivity in crystalline materials has been derived by:
Callaway[8] developed based on the single mode relaxation time model that can suc-
cessfully predict the low temperature thermal conductivity of germanium, this ap-
proach uses the Debye approximation, which assumes that there is no phonon disper-
sion and that the longitudinal and transverse polarizations behave identically and he
pointed out that because normal processes cannot by themselves lead to finite lattice
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thermal conductivity, it is not legitimate to add reciprocal relaxation times for normal
processes. And later Holland[9] extended the work of Callaway by separating the
contributions of longitudinal acoustic and transverse acoustic phonon, including some
phonon dispersion and using different forms of the relaxation times, better high tem-
perature agreement was found for germanium than with Callaway model. Callaway's
[8] and Holland's [9] model have been used by Asen-Palmer et al. [10] for the ther-
mal conductivity analysis to estimate the effect of isotopes and normal processes of
the phonon scattering, which they have modified the callaway model to get satisfac-
tory fits to their experimental data on germanium. In their approach, they treat trans-
verse and longitudinal modes separately and presented the most widely used formula-
tion for bulk lattice thermal conductivity k(T) for various semiconductors.

Lattice Thermal conductivity for intrinsic crystal Si nanowires of different di-
ameters 22, 37, 56 and 115nm have been measured by Li et al. [11]. The results show
that for all four-diameter wires the lattice thermal conductivity are much lower than
bulk value and at their smallest wire diameter of 22nm, a linear lattice thermal con-
ductivity appears over the whole temperature range. Most of researchers were calcu-
lated lattice thermal conductivity for Si nanowires of different diameters of 37, 56
and 115nm, they were successful for some of these diameters compared to the ex-
perimental data but none of them succeeded to obtain an accurate value for the 22nm
diameter.

The purpose of this paper is to calculate the lattice thermal conductivity using
an approach similar to that of Asen-Palmer et al.[10] with size effects of melting
point, Debye temperature, group velocity and the effect of modification on Gruneisen
parameter, lattice dislocation and surface roughness on the lattice thermal conductiv-
ity in S1 and Ge nanowires, good agreement with experimental results is obtained for
S1 nanowires. On the other hand, followed the same method as for Si nanowires, to
obtain the lattice thermal conductivity sets of Ge nanowires by recalculation and us-
ing the same theoretical dependencies, for which no experimental data is available to
date, which await experimental verification.

2. Theoretical Model

2.1 Lattice thermal conductivity. Recently an extension of the Callaway model
was provided by Asen-Palmer et al.[10], who successfully modeled the lattice ther-
mal conductivity by not only using the Callaway formalism but also by considering
the explicit mode dependence of the lattice thermal conductivity and summing over
one longitudinal (k, ) and two degenerate transverse ( k, ) phonon branches:

K=X, +2K,. (1)
Based on the Callaway's[8] model, k, can be written as

K, =K, +K,,, 2)
where
0,/T L 4 x
Ku :lCL %dx, (3)
3 y (e =1
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In these expressions, (r,)"' is the scattering rate for normal phonon processes,
(r,)"" is the sum of all resistive scattering processes such as isotope, three-phonon
Umklapp and boundary, and (z,.)"' is the combined relaxation rate that can be written
as
(Tc)_1 = (TN)_1+(TR)719 )
where subscript 7 and L denote transverse and longitudinal phonons, 7 is absolute
temperature, 0, and 0, are Debye temperatures of transverse and longitudinal

branches respectively, x is a dimensionless parameter that can be written as

=10 ©)
k,T
where o is phonon frequency, 7 is reduced Planck constant and £ is the Boltzmann
constant.
And
__ K
D, (10)

Here v, ;, are the longitudinal (transverse) acoustic phonon velocities, respectively.

2.2 Phonon relaxation rates. In this model, the acoustic phonon relaxation is
considered in resistive processes, such as three-phonon Umklapp scattering, mass-
difference scattering, boundary scattering and normal three-phonon scattering. The
relaxation times are 1,, T, , T, and 1, respectively. The effective relaxation rate

can be obtained by the Matthiessen rule for each phonon mode

(re) = () (wh) ) () (1)
and

(o) = (1) "+ (1) "+ () H(Ty) (12)
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The relaxation rate for phonon-phonon Umklapp scattering was given by Slack
and Galginaitis [12] as

1, (w) = B,w’Te """ (13)
with
hy2
B, = , 14
YoMve, (14)

where y is the Gruneisen anharmonicity parameter and M is the average atomic
mass in the system. The phonon-phonon relaxation rates in the case of longitudinal
and transverse phonons are expressed in terms of the dimensionless parameter x as

(T(L](X))_l :Bé(%)2T3e(—9L/3T) (15)
with
2
Bé = hY—L2 (16)
Mv,70,
and
(T{](x))—l :Bg(%)2T3e(—97/3T) (17)
with
2
B! = hyg . (18)
Mv. 0,

The Umklapp scattering rate depends on the longitudinal and transverse Debye
temperatures 6, and 6,, acoustic phonon velocities v, and v,, and Gruneisen pa-
rameters y, and y,, thus will be different for different modes and it is assumed that
heat is carried only by acoustic phonons, where bulk values y"and y’ of silicon and
germanium equal to 1.1 and 0.6[10] respectively.

Mass-difference scattering is the scattering of phonon due to differences in mass.
The mass-difference scattering rate is given by Klemens[13]
VIiw' 3V'S°
4my’ " o (19)

where V), 1s the volume per atom, S is the scattering factor which usually has a value

Ty (@)=

close to unity, N, = 1is the impurity concentration. However impurity concentration up

mp
to 10""cm™ has no effect on lattice thermal conductivity in bulk crystal. T is the
measure of the strength of the mass-difference scattering defined as

M.
= (1-—= 20
LS5 (20)
Here f, is the fractional concentration of the impurity atoms of mass M, and
M=>M.f, (21)

where M is the average atomic mass. Naturally occurring silicon consists of three
main isotopes having their atomic masses of 27.976929, 28.976496 and 29.973763,
while naturally occurring germanium of five isotopes have 69.9243, 71.9217,
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72.9234, 73.9219 and 75.9214. Mass-difference relaxation rates in the case of longi-
tudinal and transverse phonons are expressed in terms of the dimensionless parameter
X as

Viky 4.4 3V'S?
4.3 X7+ 3 imp
4nh’y; hv,

(), (X)) =

(22)

and

Vk, 3y’S?
T (x) =L X' 4 2 -
( M( )) 4TCh4V; hV; imp
The phonon-boundary scattering rate is assumed independent of temperature and
frequency and can be written as[10,13]

(23)

5 =, (24)

where D is the diameter of nanowires. Zou and Balandin[14] includes effect result-
ing from specular reflection of phonon at the surface, they introduced the parameter
p , which characterizes the interface roughness and its effect on the boundary scatter-

ing. The value of p represents the probability that the phonon is undergoing a specu-
lar scattering event at the interface. The value of (1— p) represents the probability

that the phonon is undergoing a diffuse scattering event. Then the expression for the
boundary scattering rate via introduction of parameter p, is taken as [14]

Y-
Ty = D(l p)- (25)

The boundary scattering rates in the case of longitudinal and transverse phonons
which interest in this paper are expressed in terms of the specularity parameter p as

iyt YL
(75) —D(l p) (26)
and
Ty Y1
(73) —D(1 p) . (27)

The normal phonon scattering do not contribute directly to the thermal resistance
but are crucial in spreading out the influence of the other resistive processes to the en-
tire phonon spectrum. For phonon-phonon normal scattering the relaxation rate [13,
15]

T, (0) = B, 0T’ (28)
is the general form suggested by best fits to experimental thermal conductivity data;
the scattering rate coefficient B, is a constant independent of ® and 7 with (a, b) =

(1, 4) and (2, 3) were used for group 1V and III-V semiconductors for longitudinal
and transverse phonon, respectively. The approach of Asen-Palmer et al. [10] are the
appropriate forms for longitudinal and transverse phonons, and expresses as

(4 (x))" =B§<‘“—;>2x2T5 (29)

with
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3,2
BL = KV, (30)

N Mhzvz
and
(T ()" =By (2T 31)
with
BT _ KZ/Y?"I/O (32)
Y MY

2.3 Phonon group velocities. The average phonon velocity v is proportional to
the characteristic Debye temperature 0, of a crystal[16]

1/3
Da2—h(3NAj % (33)
nk, \ 4nV

with the Plank constant /4, the Avogadro constant N, and the molar volume V. The

system considered is assumed to be isotropic. By using the subscript B and n which
means the corresponding bulk and nanowires crystal respectively, the size depend-
ence of the phonon velocity is equal to that of the Debye temperature
vio0)
viooer
Lindemann's [17] proposed the relation between the melting point and the Debye
temperature of crystals, starting that a crystal will melt when the root mean square
displacement of atoms in the crystal exceeds a certain fraction of the inter-atomic dis-
tance for small particles. Combining with the Einstein specific heat theory, the square
of the characteristic temperature is proportional to the melting point 7, of crystals,

(34)

and the modern from of this relation for the Debye temperature 1s

1/2
0, =const - (W"’MJ (35)
with the molecular mass M , According to the same relation for nanowires[16]
e, T
= (36)
0, T,

where T, T?, 07 and 0} are the melting points and Debye temperatures of the na-

nowires and the corresponding bulk crystals, respectively. The size dependent melt-
ing point is calculated from the relation [18]

Ty | 25, —R)
7z =P [ 3R( 7, 1)}’ (37)

where S 1s the bulk over all melting entropy and R is the molar gas constant and
equal to 8.314 J.K™.mol™, r, is the radius of nanowires and 7 is the critical radius of
which all atoms of the particle are located on its surface. For low dimension crystals,
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Table 1. Calculated size dependency (v, 6,and T, ) for silicon by using equations (34), (36)
and (37).
Debye temperature Group velocity
Melti :
Diameter peo ;[rllr;g 0, (K) vx10” (m/sec)
D (nm) T (K) 0} o) vt v’
Bulk 1690 586 240 8.476 5.850
115 1655.500 579.986 237.537 8.390 5.790
56 1619.047 573.566 234.907 8.300 5.729
37 1582.460 567.050 232.238 8.202 5.660
22 1508.666 553.670 226.758 8.008 5.527

it 1s clear that 7 in equation (37) should be dependent on the structure dimension d :

where d = 0 for nanocrystals, 1 for nanowires and 2 for the thin films. The relation

between d and 7, is given by
r,=(3-d)a,, (38)

where a, is the atomic diameter.

3. Result of simulation and discussion.
Values 7", T?, 0, 07, v" and v’ are calculated through equations (34), (36)

and (37) and displayed in Tables (1) for silicon and (2) for germanium and they are
used in present calculation, the result indicate that it drops with decreasing their di-
ameter. The material parameters characteristic of silicon and germanium used in the

calculations for the longitudinal and transverse acoustic wave are v, =,/C,, /p and

v, =4/C,/p, where C,, C,, are elastic constants for silicon and germanium equal to

16.74:10", 7.96-10" ' dyne/cm” and 12.90-10"", 6.70-10"" dyne/cm’ respectively and p
is the material density for silicon and germanium is 2.33 and 5.36g/cm’ respectively.

Table. 2. Calculated size dependency (v, 0,and T, ) for germanium
by using equations (34), (36) and (37).

Debye temperature Group velocity
: 3

Diameter NI[)e;lit;lrtlg 0, (K) vx10” (m/sec)

D (nm) T (K) 0} o) vt v!
Bulk 1210 333 150 4.750 3.535
115 1184.271 329.440 148.396 4.700 3.497
56 1157.082 325.636 146.683 4.645 3.456
37 1129.800 321.775 144.943 4.590 3.415
22 1065.462 312.478 140.756 4.457 3.317
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Fig. 1. Calculated lattice thermal conductivity versus temperature from 2 to 300 K for
silicon nanowires of diameters 22, 37, 56 and 115 nm by using the effect of all scatter-
ing and calculated phonon group velocity, Debye temperature and melting point in
comparison with that of the experimental data[l11].

The critical radius r, is calculated from equation (38) for silicon and germanium is
0.674 and 0.0702nm respectively and the atomic diameter g, for silicon and germa-

nium is estimated from the formula @’ =4na,’ /3 is 0.337 and 0.351nm, respectively.

In this work the scattering processes of Umklapp, mass-difference and boundary
contributes to lattice thermal conductivity were considered. The effect of temperature
dependent lattice thermal conductivity k& for diameters 22, 37, 56 and 115 nm nu-
merically calculated using MathCAD Software to solve equation (1) are presented in
Fig.(1) and Fig.(2) for silicon and germanium respectively, the result shows the varia-
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Fig.2. Calculated lattice thermal conductivity versus temperature from 2
to 300 K for germanium nanowires of diameters 22, 37, 56 and 115nm by
using the effect of all scattering and calculated phonon group velocity,
Debye temperature and melting point.
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tions of the lattice thermal conductivity with different diameters and values of lattice
thermal conductivity for intrinsic single crystal silicon will be compared with that of
the reported experimental data [11].

The other parameters used in the numerical solution are the form factor for the
mass-difference of three silicon isotopes was found to be 0.922, 0.047 and 0.031 and
for five germanium isotopes equal to 0.205, 0.274, 0.078, 0.365 and 0.078, the meas-
ure of the strength of the mass-difference scattering I' of silicon and germanium is
calculated from equation (20) which is equal to 2.012-10* and 5.874-10™ respec-
tively, the average atomic mass of silicon and germanium is calculated from equation
(21) 1s 28.0858 and 72.6324 atomic mass unit respectively and the volume per atom
V. of silicon and germanium having their lattice constant a of 5.66 and 5.43 A is es-

timated from the formula V, =’ / 8 is 2.0012-10 > and 2.2665-10 > m’ respectively.

Due to other size dependence parameters some other mechanism comes in and
plays an important role for the phonon transport such as N, , P and y where their

imp 2

explanations are given in the following section:

3.1 Modification due to Lattice Dislocations, Surface roughness and Grunei-
sen anharmonicity parameters on lattice thermal conductivity. When a bulk crys-
tal reduces to a nanowire size, the geometrical disturbance is expected to occur and
the periodicity of the lattice from wire cross-section center increases in a systematic
form from the minimum inter-atomic bonding which is mostly for the bulk to that of
the maximum bonding length at the surface[19]. Lattice arrangement of successive
circular layers at the wire cross-section will be deformed with regard of their lattice
periodicity by transferring from the expected surface plane to another at their trun-
cate. However, truncate makes an intersection angle between the two planes where it
increases as the wire diameter decreases[20].

Both assumed suggestions causes increase in the degree of dislocation with the
decrease of diameter. According to this approach, the properties related to the surface
will remain constant the ones belong to the bulk change in accordance to its percent-
age surface to bulk ratio. The best fit values obtained for the concentration of lattice
dislocation versus diameters of silicon nanowires are 1.17-10"°, 12.52-10",
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Fig.3. The diameter dependence of lattice dislocation of silicon
nanowires.
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Fig. 4. The surface roughness versus silicon nanowire diameter.

14.83x10" and 52.34x10"”cm™ respectively, in this case the dislocation concentration
versus silicon nanowire diameter is shown in Fig.(3) and the result indicated that val-
ues of lattice dislocation increases as the diameter of silicon nanowires decreases.
The other parameter affect on lattice thermal conductivity which influence the
boundary scattering is the surface roughness, the best fit values obtained for the sur-
face roughness versus diameters of silicon nanowires ranged between
0.512< p>0.154 are 0.512, 0.468, 0.374 and 0.154, the result indicated that values of

p decreases as the diameter of silicon nanowires decreases as shown in Fig.(4) and
this leads to higher probability of diffuse scattering.

When the size of a crystal reduces to a nanoscale range, the surface to bulk ratio
begins to effect the mechanical properties of the material and the surface bonding
length is much larger than that for the bonds belong to the bulk material[ 18], thus sur-
face effects in these high surface to volume ratio will become important on lattice
thermal conductivity, the probability of controlling lattice thermal conductivity by
Gruneisen anharmonicity parameter in nanoscale size system would be possible. Such
a conclusion can be used to correlate of both longitudinal and transverse Gruneisen
anharmonicity parameter. The best fit values obtained for the y*and " versus di-

ameters of silicon nanowires are 1.248, 1.456, 1.597 and 1.802 and 0.687, 0.952,
1.143, and 1.483 respectively, the result indicated that values of y*and ' increases
as the diameter of silicon nanowires decreases as shown in Fig.(5) and Fig.(6).

After modification in Gruneisen anharmonicity parameter, lattice dislocation and sur-
face roughness, good agreement with experimental results is obtained for Si nano-
wires as shown in Fig.(7) and for the germanium nanowires the modified theoretical
curves are obtained with the effect of modification and recalculation on the lattice
thermal conductivity directly from the parameters proportionality for silicon nano-
wires to that of germanium by using the same theoretical dependencies as shown in
Fig.(8), the result shows that as the wire diameter goes down the corresponding lat-
tice thermal conductivity is decreases, comparison with result of silicon nanowires in
Fig.(7) shows that the lattice thermal conductivity of the germanium nanowires are
much lowers than of silicon of similar diameter.
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Fig.5. The longitudinal Gruneisen parameter as a function of
nanowire diameter for silicon.

4. Conclusions

In this paper, the parameters which used in calculation nanowires material are
no longer constant such as group velocity, Debye temperature and melting point but
change depend on the nanowires size and the deviation of calculated lattice thermal
conductivity from that of the experimental values are controlled by the modified bulk
values of the surface roughness, lattice dislocation and Gruneisen anharmonicity pa-
rameters.

The lattice thermal conductivity of silicon and germanium nanowires observed
to decrease as the diameter is reduced. In comparison to silicon nanowires for the
same diameters, lattice thermal conductivity is about 1/2 of its value for germanium
nanowires, this is due to difference in isotop, lattice dislocation, boundary and Gru-
neisen anharmonicity parameter where all of them increase the phonon scattering
rate, hence, a reduced lattice thermal conductivity.
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Fig.6. The Transverse Gruneisen parameter as a function of na-
nowire diameter for silicon.
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Fig.7. Calculated lattice thermal conductivity versus temperature from 2 to 300 K
for silicon nanowires of diameters 22, 37, 56 and 115nm by using the effect of all
scattering and calculated phonon group velocity, Debye temperature and melting
point as well as the size dependent parameters of lattice dislocation, surface
roughness and Gruneisen parameter in comparison with that of the experimental
data [11].
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Fig.8. Modification and recalculation lattice thermal conductivity versus temperature
from 2 to 300 K for germanium nanowires of diameters 22, 37, 56 and 115nm by us-
ing the effect of all scattering and calculated phonon group velocity, Debye tempera-
ture and melting point well as the size dependent parameters of lattice dislocation,
surface roughness and Gruneisen parameter.
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b. /. Aboynax

Bausinue pa3Mepa Ha TeILUIONPOBOAHOCTh PellIeTKH B HAHONPOBOJIOKAX Si
u Ge B Juana3one remnepartyp ot 2 K 10 komHaTHO#

AHHOTALIUA

Teopemuuecku uccned0o8ana menionpo8oOHOCMb NPOCMPAHCIEEHHBIX PEuemoK HAHO-
nposonox Si u Ge ouamempom 22, 37, 56 u 115 nm 6 memnepamypnoti ouanasorne 2+300 K.
Onpeoenenvl 3asucumocmu pasmepa Hanonposoiok Si u Ge om memnepamypbl niaenieHus,
memnepamypel [lebas u epynnogoti cKOpoCmu, U YCMAHOBNEHO CHUNCEHUE NOCIEOHUX C
YMeHbuleHueM ouamempa. Bausnue pasmepa na menionpooOHOCMb NPOCMPAHCMEEHHOU
peulemku oyeHeHo 8 pamkax mooenu /lebas - Kannages, ¢ yuemom npoooibHuIX U nonepey-
HbIX (POHOHHBIX MOO C APKO BbIPANCEHHBIM I DeKmom paccesanus OHOHO8 HA SPAHUYAX 00-
pasya, a maxoice UCcie008aHo GlusAHUe OUCTOKAYUU PeulemKy, Uepoxo8amocmu no8epXHO-
cmu u uzmenenue napamempa I prounaiizena. Kax ciedyem u3z nonyyeHHuix pe3yiomamos, me-
NJIONPOBOOHOCMb peulemoK Hanonposonok Si u Ge moocem OblmMb 3HAUUMENbHO MeHbUUE ee
3Hauenus 68 obveme. B pamkax pabomwvl noKaA3aHo Xopouiee COOMBEMCmeue pe3yivbmamos
U3BECTNHBIM IKCNEPUMEHMANbHLIM OAHHBIM OJisl HAHONPOBOLOK Si maxux e ouamempos. B
€6010 0YepeOdb, MEeHbULAs MENIONPOBOOHOCb peulemok Hanonpogoaok Ge no cpasnenuio ¢ Si
8 OanvHetiuem mpebyem dKCnepuMeHmaibHol NPOBepKU.

b./l. A6oynax

BruiuB po3Mipy Ha TeNIONPOBIAHICTH PeLIITKHA B HAaHOAPOTUKAX Si Ta Ge B
piana3oHi remneparyp Bia 2 K 10 kimHaTHOI

AHOTAILLA

Teopemuuno 00cnioAHCeHO MENIONPOBIOHICMb NPOCMOPOBUX peulimok Hanoopomis Si i Ge
oiamempom 22, 37, 56 i 115 um 6 memnepamypunomy dianazoni 2 300 K. Busnaueno 3anedxc-
Hocmi posmipy Hanoopomis Si i Ge 8i0 memnepamypu niasieHus, memnepamypu Jlebas ma
2PYNoBoi WeUOKOCMI, I 6CIAHOBIEHO 3HUNCEHHS OCMAHHIX 13 3MeHWeHHAM diamempa. Bnius
PO3MIDY HA MeNnionpoBiOHICMb NPOCMOPOBOT peuimKu oyiHeHutl 8 pamkax mooeni /lebas -
Kannases, spaxosyrouiti makodic no300824cHi i nonepeuri QOHOHHI MOOU 3 ACKPABO BUPAdICE-
HUM epeKxmom po3Cito8aHHsA (POHOHIB HA MedNCax 3PA3KA, A MAKONC OO0CIIONCEHO 8NIUE OUC-
JIOKayit pewimku, Wopcmkocmi nogepxui ma 3minu napamempa I pronatizena. Ak euniusac 3
OMPUMAHUX pe3yIbmamis, menionposionicme pewimox Hawoopomis Si i Ge mooce dymu
3HAYHO MeHule 3Ha4eHHs 8 00'emi. Y pamkax pobomu nokazana xopouia 8ionosioHicms pe-
3YIbMamie 8i00OMUM eKCNePUMEHMANbHUM OAHUM OJisi HAaHOOpomie Si makux dce diamempis.
V ceéor0 uepey, menwa mennonpogionicme pewimox Hanoopomis Ge 6 nopieusnui 3 Si Hadani
BUMA2AE eKCNEePUMEHMANbHOL NePesipKuU.



