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Elongate coexistence curve and its curvilinear diameter as factors of global fluid
asymmetry

Some inconsistencies of the conventional predictive methodologies applied in the region of
vapor-liquid VLE-coexistence and its criticality are considered. As a rule, they are related to
the semi-empirical concept of “rectilinear diameter” accepted in the temperature-density
plane. The often curved, in practice, "rectilinear diameter” of coexistence curve (CXC) is dis-
cussable in both alternative descriptions of criticality: 1) by the Ising-based (Ib-) complete
scaling phenomenology and 2) by the classical van der Waals-Maxwell-Gibbs-based (Wb-)
phenomenology of VLE-transition. The latter has been essentially modified by the model of
Sfluctuational thermodynamics (FT). The new transformation of CXC-representation based on
the measurable equilibrium data obtained far away from criticality is proposed in the present
work. It leads to the well-established location of critical point (CP) which corresponds to the
intersection between the elongate CXC depicted in the compressibility factor-density plane
and its strongly curvilinear here diameter. The universality of global fluid asymmetry (GFA)-
principle introduced earlier by FT-model becomes apparent in the whole temperature range
of VLE-transition. The developed predictive CP-methodology can be especially useful for the
set of substances in which the direct experiment on criticality is hardly realizable.

Introduction. Two types of recent works on criticality and their rather contro-
versial results make the object of this article to be stimulated and, simultaneously,
challenging. The discussion [1]of the complete scaling phenomenology [2,3] per-
formed in terms of a discrete continuum (formed by the decorated lattice of a locally-
compressible cell-gas-model) poses the important question of the non-universal pecu-
liarities arising in the conventional asymptotic Ib-criticality. Since the known Yang-
Yang's ratio [4] is incorporated in this methodology, it has been revealed [1] that the
certain interrelation between the fluctuating primary and secondary cell-volumes can
leads, in principle, to the negative magnitude of above ratio. Its rather unwonted con-
sequence is the asymptotic shift of the extrapolated to CP CXC-diameter from the
rectilinear extension to the side of higher liquid-like densities of /-branch

p, =p,(T)/p,. This trend is opposite to the typical asymptotic behavior of CXC-

diameter originated by the revised scaling phenomenology [5].In accordance with it
the half-sum of saturated densities must curve up just to lower densities of g-branch

p; =p,(T)/p, due to the dominance of (1—a)-singularity [3]. The most unusual
feature is here the same trend observable for real fluids. It was revealed that the de-
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scribed "asymptotic bifurcation of curvature" in CXC-diameter is also observed [1] in
the real, quite similar from the thermodynamic viewpoint [6, 7], even with the equal
molecular weight (M = 44 g/mol) fluids such as carbon dioxide CO, and propane
C3Hg. As a result, it is naturally to suppose that just the non-universal pressure mixing
of the complete scaling procedure leads to the so subtle changes in the underlying
molecular structure of compounds. The main claimed here consequences are the
dominance of 2f-singularity [1-3] over its concurrent (1—(1) -type (following from
the similar decorated lattices [5]) and, at the same time, the invariable symmetric Ib-
shape adopted for the heterophase order parameter: p, — p =2BT B( =1-T/ TC) by
all variants of scaling EOS.

The predictive description of an entire CXC-shape in the (7,p)-plane and, even,
the prediction of its actual topmost part i.e. CP-parameters in terms of the reduced

critical Boyle's variables: p.,=p,/p,, T;ng /Tg; Z.p=P./(ppkpTp)=

= ZcPcB T, -p are supposedby the widely discussable long ago and recently phenome-

nology of Zeno-line [6-10]. It is a combination of two conditions. The first is the
Boyle's condition adopted at the negligible densities Z, =1 (where the second virial

coefficient tends to zero: B(T )= 0).It is applied to the original vdW-EOS with only
two constant coefficients a,, b, and one T-dependent B,y (T )-coefficient:
by p 4P
szw—1=m—k3—7, (D
The second is the Cailletet-Matthias' approximate rule of rectilinear diameter:
p,—1=DT ()
which is fulfilled in the mf (mean-field)-CP (T O,pc,PO Z, 0=3/ S)but not, a priori, in

the actual CP(T,,p.,P;Z ) Indeed, the former condition leads to the known
Batschinski's rule of a straight vdW-line existing in the (7, p)-plane:

1, bkT T
pZ_l_bO(l a4 ] (l TBJ ®

while the latter condition provides, only presumably, its intersection with the rectili-
near diameter p,(7')just at the asymptotic Boyle's point 7,(p,_, — 0).

The adepts of Zeno-line have assumed additionally [6-10] that the oppositeasy-
mptotic point of "cold" density p,(T — 0) and its respective excluded vdW-volume:

b, =1/p, from Eq.(3) can be also expressed in terms of the virial coefficients. In ac-
cordance with [6] they should be calculated at the “hot” Boyle's point:

B(TB) =0 (a) Pz = %‘:%lﬂ (1 _T_i] (b) “4)

Such assumption is not in accordance with the vdW-EOS (1) and with its direct

consequence Eq.(3) where the third virial coefficient C,; cannot be 7T-dependent.

Besides, Eq.(4b) is apparently unverifiable, in practice, for real fluids. One should
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know for this aim the explicit EOS of the virtual Lennard-Jones' (LJ-) fluid, for ex-
ample.Simultaneously, its theoretical virial coefficients B(7), C(T) determined for the
infinite-range pair potential ¢ ; (r — ;6(,¢( ) should be known with the substance-

dependent molecular parameters. Authors [8] have used (to construct Zeno-line) the
empirical unified LJ-EOS [11] developed for the Helmholtz's free energy (so-called,
fundamental EOS). It accumulates the massive volume of simulated LJ-data includ-
ing those [12] obtained in the range of VLE-transition. The standard extrapolation
treatment of the respective LJ-CXC simulated far away from the asymptotic criticali-
ty in terms of reduced variables: p,, =poy; T, =k, T/¢,; P, =Po, /¢, poses the
general task of CP-uncertainty. Thus, one needs the self-consistent determination of
the LJ-CP's location.

Despite widespread belief of the contrary its solution by the long-range extrap-
olation (proposed on the ad hoc basis [13] in the framework of empirical "scaling-

type" T, L*J -functions chosen arbitrarily and separatelyfor p;(TZ,), pr(T Z,) and

s

P (T L*J) [12]) cannot be considered as the convincing sign, namely, of the universal

Ib-type of LJ-criticality. This widespread but questionable conclusion is contrary to
such its typical features of mf-behavior as the infinite-range potential ¢, (r;5,.¢,),
its two scales of distance and energy (similarly to those b(,a( used in the simplest

vdW-phenomenology of PCS (principle of corresponding states) [7]) and, at last, the
accepted in [11] methodology of unified (i.e. common for both coexisting phases) LJ-

EOS. As a result, the "best" estimates of LJ-critical parameters T,,=131;
p.,=0314; P,,=0.126; Z,, =0.3063 [12] describe, at best, the LJ-model itself

but not the real fluids with their individual critical PCS-factors of compressibility
Z.=F, /(pckBTc)'

It is straightforwardly to demonstrate that the usually postulated“medley” of
the Ib-type's power law for the order parameter(ﬁ ~ 0.326) with the mf's-rule of a rec-

tilinear diameter of the type that from Eq.(2):
. e\B . N .
(pl_p ) =C-DT}, (a) (pl+pg)/2:A+BTLJ (b) (5)

g

cLJ

leads not only to the sought — after critical LJ-parameters of the most popular now
GEMC (Gibbs ensemble Monte-Carlo)-simulated CXC [14]:

T,=C/D (a) Py =A+BT,,  (b). (6)
One obtains also the determination of the standardcritical amplitudes [3, 15]:
B, = cP/ ZpZLI (a) D, =-B T:L/ / pZLJ (b) 7

expressed in terms of the purely adjustable coefficients (4,B,C,D) and/or CP-
parameters (?).

Just the similar, supposedly predictive linear correlations of the type that
inEq.6(b) have been proposed in two different "geometric" variants [9,10] of Zeno-
line construction:

pu=S®-T, @  p,=1/2-T;/2 () ®)
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where S;;(0.326)~0.67 and S, (1/2)~0.63. The noticable respectivedistinc-

tion in the slopes of suchstraight lines makes the empirical predictive Zeno-procedure
to be rather inconclusive from our viewpoint. Another undesirable feature of it(shared
by the above-discussed treatment of LJ-CXC) is the uncertainty adopted by many au-
thors [6, 7, 9, 10, 14] at the usage either Ib-exponent (B ~ 0.326) [15] or the mf-

one:B, =1/2 in the description of the heterophase order parameterp, — p;.

The complete scaling leads to the system of asymmetric equations (for the sim-
plicity, considered below without the non-analytic Wegner's correction) for the more

appropriate homophase order parameters [3] p, , = p;: L

P, =B, T"+p,~1 (a) p,~1=D, T +DT+D,T* (b) 9)
CXC-asymmetry corresponds presumably to the supposed divergences of p,, (f ) [2,
5]. One must conclude, some paradoxically, that no asymptotic divergence of the iso-

choric heat capacity C,, (revealed commonly for all Ib-systems [4]) can be observa-
ble for the real fluids (ethane C,H,, for example) with the strictly rectilinear experi-
mental [16] CXC-diameter (see below). Two formal reasons of such inconsistency
with the asymptotic experiment performed for CV(T,pC) of C,Hg [17] are obvious.
These can be either the coincident compensation of (1 - oc) - and 2B-contributions in
the CXC-diameter [3] or, even, the reality of mf~exponents: o, =0, B, =1/2. Both
are, of course, highly modelistic. The non-classical exponent B~1/3 leads to the

PCS-type of CXC-description developed and tested, mainly, by Guggenheim and
Riedel only for /-branch:

p,=BT"+(B-1T. (10)
It was, then, expanded symmetrically but unfoundedly on the g-branch [7]:
5,,g:iBT‘3+(B—1)7_“. (11)

In other words, two main stimuli (experimental and theoretical) of modern /b-
pheno-menology [4] leading to the non-classical exponents B~0.326 and a=~0.11
are in the certain disagreement due to the "unendorsed" role of rectilinear CXC-
diameter.

FT-model develops the alternative approach to the aforementioned problems
[18-21] leading to the concept of curvilinear but not singular CXC-diameter. It is
based on the crucial assumption of GFA-principle and the resulting rejection from the
conventional usage of any unified EOSs at the description and/or prediction of CXC.
At the same time, the application of FT-model to the global asymmetric description
of real fluids has provided the certain reconciliation between the antagonistic, at first
sight, results of the Ib- and Wb-phenomenologies in the region of VLE-coexistence
and its criticality.One may consider the FT-model described in full detail in [18-21]
as an attempt to develop the mesoscopic molecular-based phenomenology for the
measurable (not theoretically-idealized) VLE-transition. The alternative definition of
equilibria between two finite-volume inhomogeneous and, even, non-gaussian (i.e.
locally-heterophase) hases becomes possible in the region of criticality. So only its
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main and relevant to the problem of measurable CXC-diameter results are discussed
below (Sec.Ill). They demonstrate, in particular (see TABLEs LII), the surprising
consistency of some FT-predictions with the Ib-results of complete scaling [2,3].
However, any nonuniversal distinctions implied in the underlying molecular struc-
tures of CO, and C;Hj, for example, discussed in [1] have not been revealed by FT-
model. The obvious reason of such discrepancy between two phenomenologies of
criticality is the indeed rectilinear, in practice, diameter obtained by the reliable direct
experiment [22] for CO, and/or C,H, [16] (the latter substance is very similar on the
molecular level just to C3Hy).

I. Thermodynamic nature and molecular-based reasons of asymptotic sin-
gularities in real fluids. It was shown unambiguously by FT-model that the exact
parametric WMG-solution [18] proposed by Gibbs for the van der Waals-Maxwell's
mf-model of VLE-transition leads to the specific WMG-type of critical nonanalyticity,
which has not been considered by /b-phenomenology. The most striking feature of it
is represented by Fig. 1 and was revealed by introduction of the mf-scaled (super-

. 0 . _
script zero) latent heat x° = (s i sl) / 2k, instead of the usual temperature-deviation

T =1-T" from CP-position. It was termed [19-21] the heterophase mf-disorder pa-
rameter determined for entropy per particle. Its usage as the field variable instead of
standard temperature leads to the discontinuous change (or "jump") of the asymptotic

constant slope x'=dx/dp . For comparison, the slope dT /dp” tends to zero in the
asymmetric /b-variants of the scaling FOS. The real heterophase disorder parameter
is changeable from its positive value along x(p;)—branch to the symmetric constant

negative value along x(pj)—branch. Such replacement corroborates but in the quite

different (x, p*)-plane (1), the underlying asymptotic symmetry of the lattice gas. The

latter is usually discussable only in the (7, p)-plane. Its known specific consequence

follows from Eq.9(a) as the highly-modelistic vertical 7' -independent diameter
p, =1 namely in the plane (T,p*).

It is important to note that the discussed here asymptotic linearity of both
branches x(p;) and x(pj) exists for the actual (i.e. measurable by direct experiment)

parameter of disorder x =(sg —s,) / 2k, too. The constraint of equal chemical poten-
tial He =1y leads to its coupling with the latent heat. This is evident from FIG.1 not

only for mf-model but also for real fluids. Hence, the introduced here constant
+dx / dp”-slope plays apparently the role similar to that of +B,-amplitude from
Eq.(9a). Just its elimination was used by Widom long ago for the definition of the
original scaling variable. Simultaneously, GFA-principle [20, 21] points out the pos-
sible discontinuity (see below) in the Riedel's PCS-parameter of critical slope:
A, =(TC / Pc)(dPG /dT ) revealed unambiguously by F7-model. Thusthe normalized

c

entropy disorder parameter may be used, in principle, as an alternative asymmetric

12
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Disorder parameter x = (sg~s)ak,,

0 0.5 1 13 2 2.5
Reduced density p,/p,., pz,.,/,oC

[%)

Fig. 1. Asymptotic universal WMG-symmetry [18, 20] of discontinuity in the mf-
CXC-slopes: x" =p, (sg —s,)o/ 2k, p,, compared with its actual counterpart

x'= pc(sg —s,)/ZkBpg’, for real fluids: Ar — triangles [23], C,Hg¢ — squares [16], CO, —

diamonds [24], H,O — circles [26]. The inset illustrates the principal Wb-distinction
from the smooth CXC-transition in the /b-models.The latter is observable between two
coexisting branches in the plane entropy (S)-magnetization (+M) supposed by the basic
Ising (or lattice-gas) model [4] of /h-universality. Curvilinear diameter p, (p,) is only
asymptotically  tangent to the critical isochorep, from the side of the
liquidlike(p, > p, ) densities (See also Figs.2-4).

scaling variable instead of original one (]_“ /5”3) introduced, originally, by Ib-
phenomenology [4]. One may recognize now that the value of Fig. 1 is, in total and
most likely, comparable with the well-known plot of experimental CXC-
datarepresented long ago by Guggenheim in the (T*,p*)—plane. It was an obvious

sign of non-classical exponent B~1/3 (needed instead of mf-one B, =1/2) for real
fluids [4]. From what has been said above, it follows that F'7-model [18-21] provides
due to its GFA-principle and the respective FT-EOS developed separately for both
fluid (f)-phases the exactly soluble Wh-phenomenological model of VLE-transition
and of its asymmetric criticality. It goes far beyond the framework of mf~model. The
non-classical BF Ty 3, in particular, can be exactly determined without any ap-
peals to the Ib-models.One of the essential features of F'7-model is the proposed solu-
tion for the long-standing problem on the explicit hypothetical connection between
the thermodynamic PCS-criteria Z,, 4, of similarity [6,7], from one hand, and their

molecular-based effective PCS-scales €,,0, from another. The latter shave been ex-

pressed by FT-equations in terms of the reported in Table I new effective F7/LJ-
parameters €,6. These parameters are recommended in the present work for the

13
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common approach to the consistent simulation of the realistic coexisting phases. In-

deed, the F'T-correlation are based exclusively on the respective substance-dependent
(i.e. actual) critical data:

e =k, T.(1-Z.)=k,T. = P,/ p,. (12)

o, =3(4,-2)/[4n(4-1)p,] (@ o (4 =4)=1/2rp, (b). (13)

The some unusual split of the predicted effective diameter oy onto the very

close but still distinctive values o, >, is related in Eq.(13) to the revealed by FT-

model [20, 21] asymptotic difference between the above-mentioned 4. (pg - pc)-

and Ag ( p;— pc)-trends of slopes. The recommended LJ-parameters for the general-
ized short-range F'7/LJ-potential @, (r; g, G,rc)with the third, a priori unspecified pa-
ra-meter of cutoff radius 7, are represented in Table I, II for the actual CPs of several

substances.
One may see that the conventional constant values ¢, /k, =119.8K,

o, =0.3405nm of 4r, for example, obtained from the second-virial B(7)-data atsmall

densities [6] seem to be significantly overestimated in comparison with the FT-
model’s estimates. Besides, in spite of the widespread use of scaling-type Egs.(5a,b)

in the (T " p*)—plane [14], another (P*,T *) -plane remains purely classical in this ex-
trapolative procedure [13]. The magnitude of critical pressure PCL and the asymptot-

ic slope of vapor pressure PV’k (T )are described, as a rule, by the typical mean-field

Eq.(14).0One may conclude in this context that the behavior of simulated P: ( T, Z,)-

function and its presumable value P;J could be significantly distorted by the de-
scribed analysis of the only (T . p*)—plane. Indeed, the most usable concomitant

form of approximation is here the simplified low-temperature variant of the Clausius-
Clapeyron’s equation [32]:

*

P exp[A—B/(T*+C)] (14)

Table 1. The novel set of LJ-parameters predicted from the CP-data by Egs.(12,13)
Substances T,.K  P.MPa  p . moldm’ ¢&,,/kz, K o,omm  o,/0;

Ar [23] 150.66 4.860 13.29 106.68 0.2877 1.062
C,H¢ [16]  305.33 4.872 6.870 220.04 0.3610 1.069
CO, [24] 304.14 7.373 10.62 220.65 0.3147 1.078
SFe [25] 318.71 3.718 5.155 230.98 0.4012 1.080
H,O [26] 647.14 22.06 17.89 498.80 0.2667 1.087
Rb [27] 2017 12.45 3.416 1578.7 0.4715 1.106
Cs [27] 1924 9.25 2.852 1533.9 0.5010 1.107

14
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Table II. The set of reduced LJ/CP-parameters recommended at any MD- or MC-
simulations of criticality by the short-range F7/LJ [l, n/m]-potential. Its advantage is the

possibility of iterative calibration determinationof the r: -value just by simulations in the
actual CP. It becomes the well-established third PCS-parameter.

Substances Z, % Ty Fpy PeLy o (fg )

LI [12] 0.3073 5.531 1.31 0.1264 0.314

Ar 23] 0.2919 5.943 1.412 0.0785 0.1905 0.1775 [33]
0.2293 [3]

C,Hg [16] 0.2793 6.400 1.388 0.0754 0.1946 0.1808 [33]

CO, [24] 0.2745 7.044 1.378 0.0753 0.1993 0.1832 [33]
0.1576  [3]

SF¢ [25] 0.2722 7.210 1.370 0.0747 0.2004 0.1628 [33]

H,O |26] 0.2292 7.860 1.297 0.0607 0.2043 0.1861 [3]
Rb [27] 0.2173 11.27 1.278 0.0598 0.2155
Cs [27] 0.2028 11.39 1.254 0.0549 0.2159

with the adjustable coefficients 4,B,C. At higher subcritical temperatures the dew
non-ideal-gas’ density p*g as well as the respective vapor pressure P: may be

alreadywell outside the region of validity supposed by Eq.(14). To our mind, the ap-
pearance of many additional constants is the undesirable feature of any approxima-
tion. For example, authors [14] have used four additional adjustable constants in
Eqgs.(5-7) instead of two relevant amplitudes B,,D, to argue that PCS may supposed-

ly fail in the associating fluids and liquid metals [30,34].As a result of such question-
able long-range extrapolations, the above value TfLJ can be located well below than
the expected actual one in the simulated finite N-systems. Valleau [28] has supposed
that for the popular GEMC-methodology [29] such depression of TCL is an artificial
phenomenon occasioned, in particular, by the very different numbers N, and N; in

the simulated phases. Another known anomalous consequence of the standard
GEMC-approach to simulation of criticality is the three-peaked behavior of the over-
all reduced density distributions. They are steadily observable by GEMC at the near-
critical reduced temperatures. Smit et al. [13] have taken into account that GEMC ig-
nores the surface tension y(7) between g- and /-phases. This factor explains an ap-

pearance of a third peak by thesharp decrease y; ; (T *) near T,,. At the same time,
Smit [30], Mon and Binder [31], Johnson et al. [11] have examined the strong influ-
ence of the arbitrarily chosen cutoff radius 7’ =7, /G, on the near-critical shape of
CXC as well as on the location of TL*LJ exclusively in the (T*,p*) -plane. The hypo-

thetical F'7/LJ-methodology of simulations proposes the alternative choice of reduced
r: -parameter by the iterative set of calibrationsimulations performed just at the fixed

critical pressure P:LJ (taken from Table II). Its possible f~dependence is inessential,
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of course, in terms of dimensionless LJ-variables due to the coherent change in PZLJ -
density.

The GFA-phenomenology developed in the present work provides, in princi-
ple, the possibility of independent test for all above suppositions by
thethermodynamic-cally-consistent computer simulations. It is obviously from Table
I1 that two sets of substances with 7/, >1.31 and T,, <1.31 are revealed by the pro-
posed approach. It is equally interesting to note, that the substances of latter subset
(H,0, Rb, Cs) belong, unquestionably [27] to the type of Ib-systems with the singular
CXC-diameter. The careful analysis of this problem performed by Wang and
Anisimov in terms of the complete-scaling EOS [3] provides (at the given CP-
parameters) the reliable estimate of the non-universal cubic “normalized interaction

volume”(2&,)’ for the very different substances:

p=(28)p. @ §=57" (b (15)
were &, is the standard amplitude of a correlation length &(T ZTL,). The
promisingcomparison of the p: -values taken from [3] (0.2293 for C,Hs, 0.1861 for

H,0, 0.1576 for SFs) with the similar p_ -values of F7-model is represented in Table
II. The found trends of their change from substance to substance are, however, oppo-
site (pf,= 0.1946 for C,Hs, 0.2004 for SFs, 0.2043 for H,O) in the FT-model. The

close values of p,, and the similar trend of their change were also independently ob-
served by the two-scale analysis of universality reported in [33].

The discussed relatively small distinction between p, and p. becomes, howev-
er, noticeable for SF4 which is the known origin of experimental contradictions. One
group of experimentalists [25, 35] have observed the singular CXC-diameter.They
estimated the rather low critical density as p, =5.012 mol/dm’ used, then, by authors
[3] in Eq.15(a). Another group [36, 37] has not confirmed this observation and found
the rectilinear diameter for SF with the respective strong shift of critical density to
the upper value: p, =6.87 mol/dm’. The compromising combination of critical SF-

parameters [25] and those (Z_, 4.) from the PCS-reference [7] is used in Tables I, II.

It follows that the further estimate of the cubic volumes’ ratio: p, /p. =(2§,)’ /o’

may provide the important insight of the short-range near-critical simulated interac-
tions. It is also a serious challenge to model the highly-directional and short-range at-
tractive interactions in H,0 (it belongs to the subset with TC*L ;7 <131) arising due to
the hydrogen bond by the effective short-range spherically-symmetric F7/LJ [[,n/m]-
potential. It seems promising, for example, to explain also the impressive near-critical
dimerization in the gaseous Rb and Cs by the simulation based on the proposed F7/LJ

[/, n/m]-potential with the given ¢ ,, o, / o,-parameters taken from Table 1. Hensel

[34] has supposed that the presumable different nature of the net inter-particle inter-
actions in g- and /-phases leads to the strongly asymmetric shape of CXC. From what
has been said above, it follows that the same reason may be crucial for the explana-
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tion of the observed CXC-asymmetry in the whole set of real fluids. However, one
must take into account (at the performance of simulations) that in the liquid metals,
for example, the universal [],n/m]-part of LJ-potential is changeablein the manner of
PCS-description. Hoover et al. [38] have simulated long ago at T * =1 the restricted
class of purely repulsive pair potentials [/ =1,1/(m =0)]:
ole=r" (16)
and found the value n = for the singular hard-sphere-system and n ranging from
about 6 for metals to about 12 for rare gases including A4r.
The preliminary conclusions are here worthwhile. The correlation of complete
scaling [3] connecting the amplitude-radius &, from Eq.15(b) with the thermodynam-

ic amplitude of the isochoric heat capacity C,(T <T.)4,: (2&,) ~2.62k, /(Ao'pc)
can be reliably represented in terms of F7-Eqgs.13(a, b) due to the above-discussed
similarity of cubic volumes: (2&,)' ~c? (4.,p,) or ~ Gf(Af, pc). Such usage based

also on the FT-model’s approximate correspondence: B = Ai/ * [19] provides the ap-
parently testable possibility for an additional estimate 4; for C, (T =T,) by the other
accepted correlation in the complete scaling: 4; =0.523 4, [3].

II. Curvilinear diameter cannot be tangent to the elongate cxc in both (x, p)-
and (z, p)- planes. It was earlier shown [19] that in the physically informative (x, p)-
plane (see Fig. 1) any Wb-diameter (mf-one or that for real fluids) demonstrates two
essential features:
(a) —it is asymptotically tangent to the critical isochorep,;
(b) — it crosses symmetrically at x =0 the both CXC-branches discontinuous at CP.

The natural question may be now formulated. Are these geometric properties
invariant at the transformation of a field-type variable x to any other field: (x = yor
x — T ) while the role of density remains unchangeable? The negative answer to this
question follows immediately from the description of singular Ib-diameter implied by
Eq.(9b). It becomes asymptotically tangent [39, 40] to the itself CXC (see insertion to
FIG.2a) and, hence, cannot cross it at the origin of specific transformation: x — T .
Obviously, that the experimental and, even, theoretical determination of critical den-
sity p, is the hardly realizable procedure in the (7, p)-plane under the circumstances
of a fluctuation CXC-flattening [15,17].

To elucidate the choice of independent variable Z_(p) in the proposed below
transformation, one may start from the identity between two scaled by Z_ — value
dimensional pseudo-densities:

Zp=P kT an
determined along the implied CXC near its actual CP. The isothermal and isobaric
derivatives should give the straight linesasymptotically tangent to CXC in the Z(p)-
plane.
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This feature arises due to the fluctuation divergence of the isothermal critical
compressibility %, =(1/p)(dp/0P), and the isobaric critical —expansivity

a,=—(1/p)(ép/oT),:
(oz,/ ap)T( p+Z, = (X(; / XT)L» (@ (oz,/ 6p)P( p+Z = (oc?u /(XP)E (b). (18)
The finite pseudo-ideal-gas’ quantities at CP itself (Z, # 1) are normalized here
by the Z_-value scaled by the critical fields of pressure and temperature:

& =1/(pk,T)=Z. /P (@) W=Z/T (b (19)

Thus, the asymptotic behavior on approaching CP-position along the critical
field-iso-lines P. and T, has to be accurately determined by the symmetrical equali-
ties:

1 Z 1 Z
= —>—— (a o,=———2>——— (b 20
“=p z@zia) e O T Za@zig)e O %Y

Both quantities (Z_,p) shouldtend to their critical values (Z_,p,) simultaneous-
ly but asymmetrically in accordance to the GFA-principle [19, 20] from the gaslike
(pg - pc) and liquidlike (p; — p,.) ranges of near-critical states.

The accurate experimental CXC-data are represented in Figs. 2-4 for the selec-
ted illustrative examples of C,H (rectilinear diameter), H,O (curvilinear diameter),
[Cymim][BF,] (diameter with the non-specified asymptotic curvature). The elucida-
tive denotations explain in each case the physical and geometric features of the pro-
posed transformation. The above properties (a) and (b) are, in total, fulfilled in the (Z,

p)-plane though the possible asymptotic discontinuity between Zg (pg Spc)— and

Z; (p, > pc)—branches is here the featurechardly testable by experiment. This restric-
tion is also typical for all measurements directed to determine either p, at the fixed
fields P.,T, or its consequence Z,. calculated from Eq.(17) written for CP. The simi-

lar situation is observable at the prediction of mf=critical point (Zf,pg) too if one uses

preliminarily the more reliable estimates of actual fields P.,7,. to calculate the
constantcoefficients ag,by. In accordance with PCS-phenomenology [6, 7] one
should substitute, on the ad hoc basis, the actual third parameter Z_. instead of

univer-sal but unrealistic Zg -value 3/8 to obtain the correct estimate of p_. Such

procedure destroys unavoidably the WMG-equality (BZP/ apz) =0 for second de-

T,
rivative at the critical point. The chosen in Figs. 2-4 system of coordinates provides
the unique possibility to estimate the both rather elusive critical parameters Z_, p, in
any complicated situation.

The discussion of mf-model arising as a combination of the rectilinear CXC-
diameter approximated by Eq.(2) with the oversimplified WMG-concept of binodal:

18
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Fig. 2(a) — CXC of ethane [16] as an example of the (coincidently) rectilinear diameter.
The shown formal application of Zeno-line's methodology leads at low temperatures in the
(T, p)-projection to the visible anomaly of compressibi-lity factor. Inset demonstrates
schematically the singular diameter of /b-phenomenology.

2(b) — The elongate CXC and its curvilinear diameter in the (Z, p)-projection of GFA-
transformation as the“inversion” counterparts of CXC-diameter and CXC itself, respective-
ly.The rectilinear part of /-branch shown by thin tangent line crosses the curvilinear diame-
ter of C,Hg, practically, in the actual critical point (black square).

has been proposed in [9] “to derive” the purely empirical Timmermans’ and Riedel’s
equations [7]:

p.~Z.  (a) InP =A4+B/T +CiT + DT b) (22)
Authors of this approach started from the use of Eq.(17) written as the identity be-
tween two functionals of vapor pressure Q[p (T )] :PU[pI(T )]. They have applied

to its analysis the rather inaccurate interpretation of Eq.(21b).Ithas been admitted that
all three critical parameters P,p,,7, of reduced variables can be simultaneously taken

19



Disuka aepoaucnepcHux cucrem. — 2017. — Ne 54. — C. 8-29

as the actual ones in the description of mf-binodal. To revise this obvious incon-
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Fig.3(a) — CXC of water [26] as an example of the strongly curvilinear diameter. The for-
mal application of Zeno-line's methodology may lead, in principle, to the serious errors at
the prediction of critical parameters p, (7,,P.).

3(b) — The elongate CXC and its curvilinear diameter provide the exact location of critical
point although the rectilinear part of /-branch shown by thin line (see for comparison
Fig.2(b) ) is located for H,O significantly lower than the actual critical point (black square).

sistency one should fix p_,7, -parameters from Eq.(21a), but assume the mf-value Pc0
in the resulting approximate equalities:

P ., P P ., P

Z - (a) Zj=—=—=p, 2, =

pkyT F,

¢

« o kT TP

c

b (23
Thus, the empirical Timmermans’ equation [7] leads in the framework of above

assumptions [9] to the 7-dependent ratios of CXC-parameters.They can be approxi-
mated by the constant only as the rather rough assumption:
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Fig. 4(a). Two variants of curvilinear (non-divergent) diameter and CXC of ionic liquid
[Cymim][BF,4] predicted a) in [41] (small and large triangles) by GEMC-simulation of the
high-temperature region 7 > 850 K with the predicted data from [42] (lines with large
squares) obtained by F7-EOS in which only the low-temperature input experimental data of
liquid at atmospheric pressure p, (F,,T) [43] (small diamonds) have been used for predic-

tion.
4(b) The elongate CXC and its curvilinear diameter are shown only for FT-EOS [42].

- _p@m P _p(M) P
¢ zZ(@T) P Z(T) P,

The “derivation” of Riedel’s Eq. (22b) based on the same approximate Eq.(21a)
and (21b) gives [9] the typical mf-result for the reduced slope A_(T):

A0 =1+3/7" =4lr} =1) (25)
The respectiveClapeyron’s-type equation similar to that in Eq.(14):

(24)
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P =InT"+3(1-1/7") (26)

is applicable, at best, at low temperatures.
FT-model claims [19-21] that the role of critical slope 4, (Riedel’s parameter)
is quite essential and different (Sec.1l) from that of Z,. in opposite to the convention-

al PCS-viewpoint [6,7].In particular, two GFA-equations for CXC can be used for the
predictive aims with two f~dependent sets of also 7-dependent F7-EOS’ coefficients:

Z(T.p, <p.)= B,/ p kT =[a(T)p (1) / K, T][1-26(T)p (D)), (27)

Z,(T.p, 2p,) = P,/ p,T =] a"(T)p (T)/ k,T |[1-26°(T)p,(T)]. (28)

The aim is here (see, for comparison Eq.(24)) to take into account the difference

of A(T)- and AJ(T)-slopes which may represent the same measurable CXC-
branches separately in terms of the CXC-diameter (the locus of midpoints) p,(7) and
the density of another coexisting phase p, , . At the critical point two different asymp-

totic slopes 4, and A’ =4 arise due to the described GFA-distinction:

a,=P.(4,-1)/p2, be=(4,-2)/[2pc(4.-1)], (29)
¢, =1-2,4/[2(4,-1)], (30)

a®=3P./p2, p0=1/3p,., 31)

& =1-2.127=1-82./3. (32)

Thus, two universal criteria of the simplest vdW-variant of PCS [6, 7] Z., Af are
used here together with the actual (i.e. measured) critical parameters p,,P;Z,,4.. It
is remarkable that at theplausible asymptotic assumption p, =1—p, << By /2=1 ac-
cepted for the critical isobar E =1-P" =0 (it forms the /-branch of CXC in the (T,
p)-plane), FT-model [18-21] predicts accurately the set of non-classical /-exponents:
O =1/6,B,;,=1/3,v,,=7/6,8,,=9/2. Moreover, any mf-exponent never ap-
pears in F'7-model (!) due to the GFA-principle, which rejects theconcept of CXC-
analyticity and hence the concept of a unified EOS.

At low subcritical temperatures, the dew densities p,(7') are about ideal-gas-

ones. They tend to zero p, — 0simultaneously with the vapor pressures P, — 0
while their ratio becomes about unit (Z P 1). Simultaneously at low temperatures

of [-branch the Boyle’s-locus Zp = lcoincides, practically, in the (T ,p)—plane with
the CXC-locus Z; ~0 (see Figs 2(a)-4(a)) arising due to the respective
negligiblevalues P, ~ 0. As a result of such “collapse” the symmetric quadratic func-

tions of Zeno-line for pressure expressed in terms either reduced temperature or re-
duced density with the same Boyle’s constants pp and Tp:

P = BpBT[l _Ti} (a) P, =kyTy p{l - ﬂj (b) (33)

B B
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become inapplicable alongside the isolines p, and T of a low-temperature
CXC.The revealed by FT-model asymptotic discontinuities of the disorder parameter
x:(sg —S,)/2kB and the reduced slope A, =(T/P,)dP,/dT are also intercom-
nected at each point of VLE-transition by the thermodynamic Clausius-Clapeyron’s
equation:

x=4,(2,-2)/2 (34)
The asymptotic behavior of compressibility factor Zg ; is presumably (see Figs 2(b)-

4(b)) smooth, at least, for its first derivative (8Z / 8pg) =(8Z /0p, )T taken at CP

T,
along the critical 7, -isotherm. In this case the critical jump-like discontinuity of x is
determined completely by the critical discontinuity of A4_(p) changeable from the
non-universal value 4, (pg - pc)to the universal one A (p; —p,)=4.The
Clausius-Clapeyron’s Eq.(35) is reducedat low temperatures to the quite simple ap-
proximate form termed theClapeyron’sequation (7}, is the normal boiling point):
A, (T<T,)=2x. (35)
Thus thecritical isochore p, is asymptotically tangent to theCXC-diameter. This
is similarly to that observable in the (x,p)-plane of Fig. 1. Since the critical isotherm
T. is supposedly tangent to CXC [39, 40] in both (7,p)- and (Z,p)-planes one may
admit the only crossing between CXC and its diameter but not the divergence of lat-
ter. However, the role of critical isobar P, in the (T . p) -plane is crucial, in accord-
ance with FT-EOS [20, 21], to explain the singular CP-nature. Indeed, in the (7,p)-
plane P, -curve is asymptotically tangent to CXC only at p, <p, but for the higher
densities p, >p, it coincides with the I-branch p,(T) of CXC. Analogously, in the
(P,p) -plane T, -curve is asymptotically tangent to CXC only at p, >p_ but for the
lower densitiesp, < p, it coincides with the g-branchp, (PG) of CXC.

The existence of a low-temperature anomalous range of compressibility detec-
ted by Figs. 2-4 makes the widespread now linear Zeno-methodology of predictions
[6-10] to be rather questionablein this region. As a consequence, the supposed direc-
tion of the tangent Boyle’s Zp =1-line to the /-branch of CXC p,(T) can be deter-
mined only visually. This procedure can lead to the similar uncertainties (see Figs
3(a), 4(a)). The curvilinear shape of CXC diameter provides also the similar uncer-
tainties in the (7, p)-plane. The situation can be essentially revised, from our view-
point, by the long-range linear extrapolation to zero temperature only the reliable ex-
perimental data p (7 <7,;F,) measured at atmospheric pressure Pj. The aim of

such assumption is, first of all, the reliable estimate of a physically plausible value of
the excluded volume b, (similar to that from Eq.(3)) without any appeals to the fic-

tive Boyle’s density p,introduced by Eq.(4) in the context of Zeno-methodology.
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Table 3. GFA-variants of the Boyle’s temperature predicted by Egs.(36a,b).

Fluid Z, 4. T/Tg  T,/Ty Te/Tgll
Argon 0.2919 5.833 0.281 0.381 0.38
Krypton 0.2911 5.787 0.284 0.382 0.38
Xenon 0.2900 5.818 0.284 0.383 0.38
Methane 0.2895 5.900 0.281 0.384 0.38
Nitrogen 0.2895 6.072 0.273 0.387 0.39
Ethylene 0.2812 6.354 0.270 0.395 0.40
Ethane 0.2793 6.390 0.270 0.398 0.40
Propane 0.2790 6.520 0.266 0.398 0.40
Nitrous Oxide 0.2760 6.590 0.266 0.403
Acetylene 0.2750 6.810 0.259 0.404
Carbon Dioxide 0.2745 6.838 0.259 0.405 0.41
Sulfur Hexafluoride 0.2739 6.960 0.255 0.406
Ammonia 0.2433 7.269 0.276 0.457
Water 0.2292 7.860 0.272 0.485
Methanol 0.2209 8.438 0.263 0.503
Ethanol 0.2411 8.295 0.245 0.461

It is interesting to note that the restrictions of the basic lattice-gas model im-
plied by the Ib-scaling £OS at the description of real fluids in any range of subcritical
temperatures become understandable for some adepts of Zeno-line’s methodology
too. In particular, authors [44] have concluded that the accuracy of empirical projec-
tive map proposed in [10] for the transformation of actual CXC into the lattice-gas’
symmetric (T ,p) -locus may be significantly improved “by using as input, in place of
the lattice gas, the original vdW EOS or (it is our cursive) simulation results for the
LJ-potential” (see, however, Sec. I).Such alternative possibility is emphasized in [44]
by the illustrative drawing of two combinations of Zeno-line with rectilinear
diameterfor the vdW- and LJ-fluids in the (T ,p) -plane (see also [6]. For both straight

lines, the intersection at the supposed Boyle’s point can be realized (in opposite to
Zeno-methodology [8-10]) only at the meaningless negative densities. Such discrep-
ancy was also discussed [45] in terms of the alternative empirical straight line de-

scribed by Eq.(8a). The presumable resulting correlation Z, (o — the Pitzer’s acentric

factor) [10, 41] is, of course, the known and typical PCS-property [6, 7].
FT-model provides two independent GFA-variants of analytic prediction for

the ratio T, =T / T, by the exact equations:
T, 4,-2 T, 40 -2 1
ce— () = ———==5, (b) (6
T, 27.(4,-1) Ty 2z (4-1) 9Z
This result obtained without any geometric constructions is reported in Table 3.
The excellent predictive ability of F7-model (see the last column) corresponds just to
the asymptotic universal 4’ =4 slope measurable along /-branch. Namely it provides

also the FT-model’s prediction of non-classical critical exponents for liquid:

24



Disuka aepoaucnepcHux cucrem. — 2017. — Ne 54. — C. 8-29

12 4

3 3
Z /p, .cm /mol Z,/p,.cm /mol

1 H,0 1281 || H,0 80

Ar 2197 || Ar 1581

_ co, 2580 || o, 1918

08 18 C,H, 3684 || CH, 2806

C,H, 4066 || CH, 3109

06 - [C,mim][BE,] 90.91
N
0.4 {}
0.2 -1
0 .

0 10 20 30 10 50 60
p, mol/dm?

Fig. 5. Elongate forms of CXC for the different molecular compounds represented: a) — to
confirm the universal and, simultaneously, quite distinct shapes of g-branch Z, (p)and [-
branch Z;(p) in accordance to GFA-concept [20]; b) — to demonstrate the existence of im-
pressively rectilinear segment of Il-branchlocated between the near-critical and low-
temperature regions; ¢) — to emphasize the presence of singular (marginal) segments of
Zg4(p)-behavior belonging to both axes of (Z,p)-plane (see text); d) — to point out the ap-
proximate lower boundary Z/p, of anomalous liquid state (see insertion).

O =1/6,B,,=1/3,v.,=7/6,38,,=9/2 following from the exact WMG-model.
The average accuracy of graphic predictive Zeno-methodology in Fig. 2(a) for C,H;
and Fig. 3(a) for H,0 can be now estimated by comparison with the analytic F7/PCS-
prediction of Table 3: 8., =11.4%, &, , =4.8%. The second predicted by Eq. (36a)

value T, /Ty based on two actual nonuniversal PCS-criteria Z., 4. for an asymptot-
ic g-phase determines the upper boundary of predicted Tp-value which indicates the

overall uncertainty 7, — T >0 of its thermodynamic definition (see the recent work
[46].

IT1. Conclusion. The “Procrustean bed” of binodal (with its restrictivemf criti-
cality) and theem-pirical rectilinear (only coincidentally) CXC-diameter are main ob-
stacles to wake to the understanding GFA-concept and to the respective discussed
here FT/LJ-simula-tion. The measurable CXC of real fluids and its curvilinear (slight-
ly or strongly) locus of midpoints can be very approximately represented in terms of
mf-concepts (binodal and rectilinear diameter). They are, most likely, the thermody-
namically more complex objects in comparison with the discrete models of ordinary
or even decorated lattices. Nevertheless, the additional involvement of the universal
GFA-behavior accepted for the vapor pressure is desirable. It reveals the fundamental
interrelation between the /b-phenomenology of local criticality and the Wb-
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phenomenology of an entire (or global) VLE-transition. To our mind, this revision is
the necessary step to reconcile the traditional PCS-methodology with the different
variants of the scaling universality without the crossover concept [15]. Fig. 5 and its
illustrative meaning can be considered as the striking confirmation of GFA-principle
formulated as the modified F7-model’s variant for Wh-phenomenology. The univer-
sal and similar shapes of the elongate g- and /-branches are evident as well as a fur-
ther necessity to investigate the GFA-concept and Wh-phenomenology modified by
FT-model.Recently, the set of discussed here results and observations has been used
to formulate the novel predictive GFA-methodology termed the congruent vapor-
liquid (CVL) diagram [46]. 1t is applicable to the real fluids in the whole f~range of
temperatures (0,7 ]. Hence, the traditional VLE-diagram corresponds only to the

certain fragment of a more general CVL-diagram. The performed numerical estimates
of CP- and CXC-prediction are quite promising for the hardly measurable in the re-
gion of criticality fluids.
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Pozankoe O. B. mn., Mazyp B. A., Kanunuaxk B. B., Cepzeesa A. E.,
Jlesuenxo B. U., Illeéeuy M. B., Pozankoe B. b.

BoITsiHyTast KpHBasi COCYlIeCTBOBAHHUS U e¢ KPUBOJIMHEIHBIH AMaMeTp KakK
¢axrops! r100aabHOM (QuIIOMIHONH ACMMMeTPUH

AHHOTAIIUS

Paccmompenvr pso Heco2nacoeaHHOCmell 6 NPUHAMbBIX MEeMOO0NI02UAX NPEeOCKA3AHUS, UC-
NOL3YEMbIX 6 patioHe Nap-HCUOKOCHIHO20 COCYWecmBosanus u Kpumuyeckou mouku. Kax
NpAsUNo, OHU BOHUKAIOM 6 CEA3U C PA3HbIMU MOJKOBAHUAMU KOHYENYUlU «NPAMOTUHEUHO20
ouamempay 6 niockocmu memnepamypa-niomuocms. OH YACMO UCKPUBTEH HA NPAKMUKE U
MOdICem PAcxoOUmuvCsi 8 08YX AlbMEPHAMUGHBIX ONUCAHUAX Kpumuurnocmu. 1) 0cHoanHoll Ha
MoOoenu HM3unea ¢heHomeHonro2uu noaHo2o cKelliunea u 2) Kiaccuueckou hpeHomeHono2uu ne-
pexoda nap-szcuokocms, pazpabomanHol ean-oep-Baanvcom-Maxcsennom-I'u6o6com. Bmopas
U3 HUX CYWecmeeHHO MOOUGUYUPOBAHA 6 MOOeaU QIyKmyayuoHHoU mepmoouramuxu. Hosoe
npeobpazosanue Oisi NOIHOU KPUGOL COCYUeCMBOBAHUSI OCHOBAHO HA USMEPAEMbIX PAGHOBEC-
HbIX OQHHBIX, NOIYYEHHBIX 80aNU OmM Kpumuyeckou obaacmu. Ilpeonoscennoe 6 Hacmoswyel
pabome, OHO NO360J5EM C NPUEMAEMOU MOYHOCTBIO ONPedenums NOI0XHCeHUe KPUMUYEeCKouU
MOUKU, KOMOPOe COOMEEMCMEyent NePeceyeHuto Mexicoy 6blMmsaHymoll KpUgoi cocyuecmso-
8aHUs 8 NIOCKOCHIU (YAKMOP COHCUMAEMOCU-NIOMHOCHIb U €€ BbIPANCEHHO-KPUSOTUHEUHbIM
30ecb OuamempoMm. YHueepcamibHOCmb NpUHYUNA 2100aNbHOU  DIIOUOHOU  acumMMempu,
copmynuposanrozo panee 8 Mooenu GayKmyayuoHHoU mepmMoOUHAMUKY, OOKA3AHA OTIsl 8Ce-
20 MeMnepamypHo20 UHMepeana nepexooa nap-jcuokocme. Pazeumas npedckazamenshas
Memooonozus onpedenenus KpUmu4eckoll mouku Moxicem Ovims 0COOEHHO NOAE3HOU O psi-
0a gewjecme, 8 KOMOPbIX €€ NPAMoe UMEPEHUE KPALIHe 3ampyOHEeHO UL HEGO3MOJICHO.

Pocankoe O. B. mon., Masyp B. O., Kaninuak B. B., Cepzcesa O. €.,
Jlesuenko B. L, Illseuv M. B., Pozankos B. b.

Bursarnyra kpuBa cniBicHyBaHH1 i il KpuBouJliHiiinuii giamerp sk dakropu rio-
O0anbHOI uroigHOT acuMeTpii

Awnoraris

Posenanymo pao neyseodcenocmeil 6 NPUIHAMUX MeMOOOA02IAX nepeddaueHHs, BUKOPU-
CMOBYBAHUX 8 PALIOHI NAPA-PiOUHHO20 CRIBICHY8AHHA | KpumuyHoi mouxu. Ak npasuno, 6onu
BUHUKAIOMb Y 36 513Ky 3 DISHUMU NUIYMAYEHHSIMU KOHYenyii «npsaMONIHIHO20 diamempay 6
nrowuHi memnepamypa-eycmuna. Bin uacmo euxpuenenuti Ha npaxmuyi i Modce po3xoou-
MUCb 6 080X ALMEPHAMUBHUX ONUCAX Kpumuunocmi: 1) 3acnoeanoi na modeni I3inea geno-
MeHON02ii n08H020 cKellninead i 2) kiacuunoi ghenomenonozii nepexody napa-piouna, pospoo-
nenoi san-oep-Baanscom-Maxcseennom-I'ib6com. [pyea 3 Hux cymmeeo mooupikosana 6 mo-
Oeni (prykmyayiiinoi mepmoounamixu. Hose nepemeopenns 0nisa nogHoi Kpueoi cnigicHyeanHs
3ACHOBAHE HA BUMIPIOBAHUX PIBHOBANCHUX OGAHUX, O0EPICAHUX 80ANUHI 8I0 KpumuuHoi obna-
cmi. 3anpononosane 6 yiii pob6omi, 6OHO 00360JAE 3 NPUUHAMHOIO MOYHICMIO BUSHAYUMU NO-
JIOJCEHHST KPUMUYHOT MOYKU, SIKe GION0BIOAE NEPEMUHY MIdC UMSASHYMOK KPUBOK CNIBICHY-
6AHHSL 68 NIOWUHI (PAKMOP CIMUCTUBOCII-SYCIURA T iT BUPAICEHO-KPUBONIHITHUM mym Jlame-
mpom. Yuigepcanvnicms npunyuny 2nobanvroi garoionoi acumempii, cghopmynvoearnozo pa-
Hiwe 6 Mooeni PayKkmyayiiiHoi mepmMoOUHAMiKY, 008e0eHd 05l 6CbO20 MEMNEPAmypHO20 iH-
mepeany nepexody napa-piouna. Pozeunyma nepedbauysanvHa memooonois 6U3HAYEHHs
KPUMUYHOT MOuKU Modice Oymu 0coOIUB0 KOPUCHOKW O POy PedO8UH, 8 SIKUX il npsimy umi-
prosanns 6Kpail ympyonene abo HemMoxciuge.
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